

Diagnosis, staging and treatment of patients with lung cancer

National Clinical Guideline No. 16

This National Clinical Guideline has been developed by the National Cancer Control Programme Guideline Development Group (GDG), within the HSE.

Using this National Clinical Guideline

This National Clinical Guideline applies to adults (18 years or older) with newly diagnosed lung cancer, or, those that have a suspected diagnosis of lung cancer in a hospital setting.

This guideline is intended for all health professionals involved in the diagnosis, staging and treatment of patients with lung cancer. While the CEO, General Manager and the Clinical Director of the hospital have corporate responsibility for the implementation of the recommendations in this Clinical Guideline, each member of the multidisciplinary team is responsible for the implementation of the individual guideline recommendations relevant to their discipline.

This guideline is also relevant to those involved in clinical governance, in both primary and secondary care, to help ensure that arrangements are in place to deliver appropriate care for the population covered by this guideline.

Whilst the guideline is focused on clinical care, it is expected to be of interest to patients with lung cancer and their significant others. Effort has been made to make this document more user friendly. A list of medical abbreviations used throughout the guideline can be found in Appendix 9: Glossary of terms and abbreviations.

Disclaimer

NCEC National Clinical Guidelines do not replace professional judgement on particular cases, whereby the clinician or health professional decides that individual guideline recommendations are not appropriate in the circumstances presented by an individual patient, or whereby an individual patient declines a recommendation as a course of action in their care or treatment plan. In these circumstances the decision not to follow a recommendation should be appropriately recorded in the patient's healthcare record.

Users of NCEC National Clinical Guidelines must ensure they have the current version (hardcopy, softcopy or App) by checking the website: <u>www.health.gov.ie/national-patient-safety-office/ncec/national-clinical-guidelines</u>

Published by: The Department of Health Hawkins House, Hawkins Street, Dublin 2, D02 VW90, Ireland Tel: +353 (1) 6354000 www.health.gov.ie

November 2017. ISSN 2009-6259. © Department of Health, November 2017.

Citation text

Department of Health (2017). Diagnosis, staging and treatment of lung cancer (NCEC National Clinical Guideline No. 16). Available at: http://<u>health.gov.ie/national-patient-safety-office/ncec/national-clinical-guidelines</u> In text citation (Department of Health 2017)

Membership of the Guideline Development Group

The Guideline Development Group (GDG) was chaired by Dr. Marcus Kennedy, Respiratory Physician, Cork University Hospital (CUH). This National Clinical Guideline is supported by the National Cancer Control Programme.

Membership nominations were sought from a variety of clinical and non-clinical backgrounds so as to be representative of all key stakeholders within the Health Service Executive. GDG members included those involved in clinical practice, project management, research and librarian services.

Name	Title/position	Role on guideline group
Dr. Marcus Kennedy	Respiratory Physician, CUH, Member of the Expert Advisory Group, HIQA, HTA- Smoking cessation	Chair
Radiology		
Dr. Peter Beddy	Consultant Radiologist, SJH	Writing member
Dr. John Bruzzi	Consultant Radiologist, GUH	Writing member
Dr. John Murray	Consultant Radiologist, MMUH/MPH	Writing member
Dr. Kevin O'Regan	Consultant Radiologist, CUH	Writing member
Pathology		
Dr. Ciara Barrett	Consultant Histopathologist, MMUH	Writing member
Dr. Louise Burke	Consultant Histopathologist, CUH	Writing member
Dr. Aurélie Fabre	Consultant Histopathologist, SVUH	Writing member
Dr. Siobhan Nicholson	Consultant Histopathologist, SJH	Writing member
Respiratory Medicine		
Dr. David Breen	Consultant Respiratory Physician, GUH	Writing member
Dr. Marcus Kennedy	Consultant Respiratory Physician, CUH	Writing member
Dr. Ross Morgan	Consultant Respiratory Physician, BH	Writing member
Dr. Dermot O'Callaghan	Consultant Respiratory Physician, MMUH	Writing member
Dr. Barry O'Connell	Consultant Respiratory Physician, SJH	Writing member
Surgery		
Mr. Mark Da Costa	Consultant Cardiothoracic Surgeon, GUH	Writing member
Mr. David Healy	Consultant Cardiothoracic Surgeon, SVUH/MMUH	Writing member
Ms. Karen Redmond	Consultant Cardiothoracic Surgeon, MMUH/MPH	Writing member
Mr. Ronan Ryan	Consultant Cardiothoracic Surgeon, SJH	Writing member
Mr. Vincent Young	Consultant Cardiothoracic Surgeon, SJH (to October 2013)	Writing member

Medical Oncology		
Dr. Linda Coate	Consultant Medical Oncologist, UHL	Writing member
Dr. Sinead Cuffe	Consultant Medical Oncologist, SJH	Writing member
Dr. Emer Hanrahan	Consultant Medical Oncologist, SVUH	Writing member
Dr. Deirdre O'Mahony	Consultant Medical Oncologist, CUH	Writing member
Radiation Oncology		
Dr. David Fitzpatrick	Consultant Radiation Oncologist, SLH	Writing member
Dr. Carol McGibney	Consultant Radiation Oncologist, CUH	Writing member
Dr. Pierre Thirion	Consultant Radiation Oncologist, SLH	Writing member
Palliative Care	· ·	·
Dr. Michael Lucey	Consultant in Palliative Medicine, Milford Hospice	Writing member
Dr. Lucy Balding	Consultant in Palliative Medicine, SJH	Writing member
Dr. Karen Ryan	Consultant in Palliative Medicine, Clinical Lead, Palliative Care Programme, HSE	Writing member
Project Management	· ·	·
Ms. Ruth Ryan	Project Manager, NCCP (From May 2014)	Project manager & writing member
Ms. Orla Walsh	Project Manager, NCCP (Until May 2014)	Project manager
Research		
Dr. Eve O'Toole	Guideline Methodologist, NCCP, Member of the Tobacco Control Framework (Until May 2014)	Guideline methodologist & writing member
Ms. Louise Murphy	Research Officer, NCCP (From June 2015)	Researcher & writing member
Mr. Gary Killeen	Research Officer, NCCP (Until June 2015)	Research staff
Ms. Deirdre Love	Senior Research Officer	Research staff
Library		
Ms. Pamela O'Connor	Library and Information Services Manager, Saolta Hospital Group	Librarian
Ms. Helen Clark	Library and Information Services Manager, Saolta Hospital Group	Librarian
Mr. Gethin White	Librarian, HSE East	Librarian
Health Economist		
Dr. James O'Mahony	Post-Doctoral Researcher in Cost-Effectivenes Analysis, Centre for Health Policy & Management, School of Medicine, Trinity College Dublin	Health Economist & writing member

Membership of the Steering Group

Name	Title	Role
Dr. Jerome Coffey	National Director, NCCP & Chair of Steering Group (since Nov 2014)	Chair of National Guideline Steering Group (since Nov 2014)
Dr. Susan O'Reilly	National Director, NCCP (until Nov 2014)	Chair Of National Guideline Steering Group (until Nov 2014)
Mr. Justin Geoghegan	Chair Hepatobiliary GI GDG, SVUH	Memberof the National Guideline Steering Group
Ms. Noreen Gleeson	Chair Gynaecological GDG, SJH & The Coombe Hospital	Member of the National Guideline Steering Group
Ms. Patricia Heckmann	Chief Pharmacist, NCCP	Member of the National Guideline Steering Group
Dr. Mary Hynes	Deputy Director, NCCP	Member of the National Guideline Steering Group
Prof. Arnold Hill	NCCP Surgical Advisor & BH	Member of the National Guideline Steering Group
Dr. Maccon Keane	NCCP Medical Oncology Advisor & GUH	Member of the National Guideline Steering Group
Dr. Marcus Kennedy	Chair Lung GDG, CUH	Member of the National Guideline Steering Group
Mr. Brendan Leen	Regional Librarian, HSE South-East	Member of the National Guideline Steering Group
Dr. Joe Martin	NCCP Radiation Oncology Advisor & GUH	Member of the National Guideline Steering Group
Ms. Debbie McNamara	Chair Colon & Rectal GDG, BH	Member of the National Guideline Steering Group
Dr. Deirdre Murray	Health Intelligence, NCCP	Member of the National Guideline Steering Group
Dr. Ann O'Doherty	Chair Breast GDG, SVUH	Member of the National Guideline Steering Group
Dr. Margaret O'Riordan	Medical Director, ICGP (to May 2014)	Member of the National Guideline Steering Group
Dr. Eve O'Toole	Guideline Methodologist, NCCP	Member of the National Guideline Steering Group
Prof. John Reynolds	Chair Oesophageal GDG, SJH	Member of the National Guideline Steering Group
Dr. Karen Ryan	Consultant in Palliative Medicine & Clinical Lead Clinical Programme for Palliative Care, SFH	Member of the National Guideline Steering Group
Mr. David Galvin	Chair Prostate GDG, SVUH	Member of the National Guideline Steering Group

Contributors

Name	Title	Role
Dr. Sandra Deady	Data Analyst, NCRI	Epidemiology advisor
Ms. Annemarie Defrein	Chief II Pharmacist, NCCP	SACT advisor
Ms. Patricia Heckmann	Chief Pharmacist, NCCP	SACT advisor
Ms. Michelle O'Neill	Senior Health Economist, HIQA	Health economics advisor
Prof. Mike Clarke	Director of MRC Methodology Hub, QUB	Methodology advisor

Credits

The role of the NCEC is to prioritise, quality assure and recommend clinical guidelines to the Chief Medical Officer for endorsement by the Minister for Health. The endorsed *National Clinical Guideline* is published and launched. It is intended through Ministerial endorsement that full implementation of the guideline will occur through the service plan.

The NCEC and the Department of Health acknowledge and recognise the Chair and members of the Guideline Development Group for the development of the guideline. The NCEC and Department of Health wish to express acknowledgement and sincere gratitude to all persons contributing to this National Clinical Guideline; especially those that give of their time on a voluntary basis, such as clinicians and patients.

Acknowledgments

The following credits and acknowledgements are made by the Chair of the Guideline Development Group. The Chair, Dr Marcus Kennedy wishes to acknowledge all members of the Guideline Development Group as full contributors credited with having given substantial intellectual leadership to the National Clinical Guideline.

Dr. Marcus Kennedy, Ms. Ruth Ryan and Dr. Eve O'Toole successfully submitted the guideline for NCEC prioritisation. The Guideline Development Group clinical members, research members and project manager agreed the scope and developed the clinical questions. The Guideline Development Group librarians carried out the systematic search for evidence. The Guideline Development Group research members reviewed the evidence, appraised the literature and performed the data extraction. The Guideline Development Group carried out the evidence synthesis including formulation of the evidence summaries and recommendations. Dr. James O'Mahony from Trinity College Dublin, Ms. Ruth Ryan, Dr. Eve O'Toole, and Ms. Louise Murphy conducted the budget impact assessment. Dr. Marcus Kennedy, Dr. Eve O'Toole and Ms. Ruth Ryan successfully submitted the guideline for NCEC quality assurance. All Guideline Development Group writing members approved the final guideline. The external review was carried out by Dr. Ian Woolhouse (Consultant Respiratory Medicine, Queen Elizabeth Hospital, Birmingham), Ms Ailsa Stein (Programme Manager, SIGN), Professor Giorgio Scagliotti (Professor of Oncology at the University of Torino, School of Medicine S. Luigi Gonzaga) and Professor Massimo Di Maio (Associate Professor of Medical Oncology University of Turin, Department of Oncology).

A full list of members of the Guideline Development Group is available in the previous page/s.

Signed by the Chair(s)

Naras Veneely

Date: November 2017

National Clinical Guidelines

Providing standardised clinical care to patients in healthcare is challenging. This is due to a number of factors, among them variations in environments of care and complex patient presentations. It is self-evident that safe, effective care and treatment are important in ensuring that patients get the best outcomes from their care.

The Department of Health is of the view that supporting evidence-based practice, through the clinical effectiveness framework, is a critical element of the health service to deliver safe and high quality care. The National Clinical Effectiveness Committee (NCEC) is a Ministerial committee set up in 2010 as a key recommendation of the report of the Commission on Patient Safety and Quality Assurance (2008). The establishment of the Commission was prompted by an increasing awareness of patient safety issues in general and high profile health service system failures at home and abroad.

The NCEC on behalf of the Department of Health has embarked on a quality assured National Clinical Guideline development process linked to service delivery priorities. Furthermore, implementing National Clinical Guidelines sets a standard nationally, to enable healthcare professionals to deliver safe and effective care and treatment while monitoring their individual, team and organisation's performance.

The aim of these National Clinical Guidelines is to reduce unnecessary variations in practice and provide a robust basis for the most appropriate healthcare in particular circumstances. As a consequence of Ministerial mandate, it is expected that NCEC National Clinical Guidelines are implemented across all relevant services in the Irish healthcare setting.

The NCEC is a partnership between key stakeholders in patient safety. NCEC's mission is to provide a framework for national endorsement of clinical guidelines and audit to optimise patient and service user care. The NCEC has a remit to establish and implement processes for the prioritisation and quality assurance of clinical guidelines and clinical audit so as to recommend them to the Minister for Health to become part of a suite of National Clinical Guidelines and National Clinical Audit. The aim of the suite of National Clinical Guidelines is to provide guidance and standards for improving the quality, safety and cost-effectiveness of healthcare in Ireland. The implementation of these National Clinical Guidelines will support the provision of evidence-based and consistent care across Irish healthcare services.

NCEC Terms of Reference

- 1. Provide strategic leadership for the national clinical effectiveness agenda.
- 2. Contribute to national patient safety and quality improvement agendas.
- 3. Publish standards for clinical practice guidance.
- 4. Publish guidance for National Clinical Guidelines and National Clinical Audit.
- 5. Prioritise and quality assure National Clinical Guidelines and National Clinical Audit.
- 6. Commission National Clinical Guidelines and National Clinical Audit.
- 7. Align National Clinical Guidelines and National Clinical Audit with implementation levers.
- 8. Report periodically on the implementation and impact of National Clinical Guidelines and the performance of National Clinical Audit.
- 9. Establish sub-committees for NCEC workstreams.
- 10. Publish an annual report.

Table of contents

Section 1:	Background	10
	National Clinical Guideline recommendations Summary of recommendations.	12 12
	Radiology	20
	Respiratory Medicine	33
2.4	Pathology	41
	Surgery	49
	Medical Oncology	64
	Radiation Oncology	84
2.8	Palliative Care	96
	Development of the National Clinical Guideline	99
	Epidemiology	99
	Rationale for this National Clinical Guideline	102
	Clinical and financial impact of lung cancer Aim and objectives	102 103
	Scope of the National Clinical Guideline, target population & target audience	103
	Governance and Conflicts of Interest	104
3.7	Sources of funding	105
	Methodology and literature review	105
	Formulation and grading of recommendations	106
	Consultation process	108
	External review	108
	Procedure to update this National Clinical Guideline Implementation	108 108
	Monitoring and evaluation	108
3.15		109
	Recommendations for research	109
Section 4:	Appendices	110
Appendix 1	: Guideline Development Group terms of reference	110
Appendix 2		111
Appendix 3	: Summary of tools to assist in implementation	122
Appendix 4	: Literature review protocol	123
Appendix 5	: Details of consultation process	129
Appendix 6	: Budget impact assessment Part A: Economic Impact Report	130 130
	Part B: Budget impact analysis	130
Appendix 7	: Implementation plan	169
Appendix 8	: Audit criteria and monitoring	182
Appendix 9	: Glossary and abbreviations	184
Appendix 1	0: Levels of Evidence & Grading Systems	189

List of Figures

Figure 1	Cancer services in Ireland	10
Figure 2	Staging algorithim in patients with suspected lung cancer	31
Figure 3	Staging algorithim in patients with suspected lung cancer	39
Figure 4	Shows the relative frequencies of the most common invasive cancers diagnosed in females in Ireland, 2011-2013	99
Figure 5	Shows the relative frequencies of the most common invasive cancers diagnosed in males in Ireland, 2011-2013	100
Figure 6	Relative frequency of the most common cancer deaths in females in Ireland, 2011-2012	101
Figure 7	Relative frequency of the most common cancer deaths in males in Ireland, 2011-2012	101
Figure 8	The Stages of Guideline Development	107
Figure 9	Economic literature review results breakdown	133

List of Tables

Table 1	Overall diagnostic characteristics (benign vs. malignant) of FNA and CB	23
Table 2	For specific diagnostic characteristics of FNA and CB	23
Table 3	Percentage diagnostic sensitivity in central tumours	34
Table 4	Percentage diagnostic sensitivity in peripheral tumours	34
Table 5	Revised cardiac risk index	54
Table 6	Annual average incidence of lung cancer in Ireland. (NCRI, 2016)	99
Table 7	Ranking of most commonly diagnosed invasive cancers in Ireland, 2012-2014 (NCRI, 2016)	100
Table 8	Number of deaths and mortality rate from lung cancer, 2011-2013 (NCRI, 2016)	100
Table 9	Ranking of most common cancer deaths in Ireland, 2012-2014 (NCRI, 2016)	101
Table 10	Projected numbers of incident cases 2015-2040 (with % increase/decrease compared to 2010): cancer of the lung (NCRI, 2014)	102
Table 11	Economic literature review protocol	134
Table 12	Economic literature evidence table	142
Table 13	Levels of Evidence for diagnostic studies (Oxford CEBM, 2009)	189
Table 14	Grades of recommendations for diagnostic studies (Oxford CEBM, 2009)	189
Table 15	Levels of Evidence for interventional studies (SIGN grading system 1999-2012)	190
Table 16	Grades of recommendations for interventional studies (SIGN grading system 1999-2012)	190

1 Background

Cancer is a major healthcare challenge. Each year in Ireland, approximately 20,804 people are diagnosed with invasive cancer. Cancer is the second leading cause of death in Ireland after diseases of the circulatory system.

Deaths from cancer averaged about 8,655 deaths per year during 2011-2013, representing about 30% of all deaths in that period (NCRI, 2016).

Lung cancer was the single most common cause of cancer death in Ireland from 2011-2012 (See Section 3.1 Epidemiology). Averaging 1,827 deaths annually, lung cancer is the leading cause of cancer deaths in both sexes (NCRI, 2016). The incidence of lung cancer in Ireland is projected to rise more rapidly in females than in males. By 2040 the rate of lung cancer is projected to increase by 136% in females (Nordpred model) and 52% in males (NCRI, 2014).

Cancer incidence data from the National Cancer Registry Ireland (NCRI) and population projections from the Central Statistics Office (CSO) have been combined by the NCRI to estimate the number of new cancer cases expected in five year bands from 2015 to 2040. The total number of new invasive cancer cases (including non-melanoma skin cancer) is projected to increase by 84% for females and 107% for males between 2010 and 2040, based only on changes in population size and age distribution (demography). If trends in incidence since 1994 are also taken into account, the number of cases is expected to increase by between 86% and 125% for females (depending on the method of projection used) and by between 126% and 133% for males (NCRI, 2014).

In Ireland, there are eight hospitals designated as cancer centres and one satellite breast unit (Letterkenny General Hospital). A cancer centre is characterised by the geographic concentration of all oncology disciplines with sub-specialised expertise on a tumour specific/discipline basis to provide the critical mass and support to achieve best practice in cancer care.

As well as these designated cancer centres, other hospitals provide cancer services such as chemotherapy (Figure 1).

Figure 1 Cancer Services in Ireland

The National Cancer Control Programme (NCCP) engages regularly with the individual cancer centres and with Hospital Group structures. Discussion of performance data, improvement plans, resources including manpower, service planning and development takes place at regular review meetings between the NCCP and senior management at cancer centre and Hospital Group level. This provides an opportunity to share good practice from other cancer centres, if relevant. Where resource issues are identified, these are included in the service planning process. As specific issues arise in hospitals, these are managed by senior hospital management.

A Lead Clinician has been nominated for each of the common tumour sites (e.g. breast, lung, prostate, colorectal) in each of the designated cancer centres, and for rarer tumour sites (e.g. oesophageal cancer) in those centres which offer a service for that cancer. The Lead Clinician chairs the governance arrangements for their service within the cancer centre and participates in a National Leads forum for that tumour site. In order to operate as a cohesive national clinical network for the purpose of clinical audit, sharing of good practice and problem solving, the lead clinicians from the cancer centres meet collectively as a National Lead Clinicians Network. This supports consistency of care across the eight cancer centres.

The National Cancer Strategy (DoHC, 2006) recommended that national site-specific multidisciplinary groups be convened to develop national evidence-based clinical guidelines for cancer care. The principal objective of developing these guidelines is to improve the quality of care received by patients.

A Guideline Development Group was established to develop evidence based guidelines for the diagnosis, staging and treatment of patients with lung cancer.

The National Cancer Strategy 2017-2026 (DoH, 2017) recommends: The NCCP will develop further guidelines for cancer care in line with National Clinical Effectiveness Committee (NCEC) standards.

2 National Clinical Guideline recommendations

2.1 Summary of recommendations.

Section	Recommendation	Grade
	2.2.1.1 Contrast enhanced CT scanning of the chest and upper abdomen to include the entire liver is recommended in all patients with suspected lung cancer, regardless of chest X-ray results.	(B)
	2.2.1.2 A tissue diagnosis of lung cancer should not be inferred from CT appearances alone.	(D)
	2.2.1.3 PET-CT is recommended for mediastinal and hilar lymph node staging in patients with potentially radically treatable non-small cell lung cancer (NSCLC) prior to invasive staging.	(C)
	2.2.1.4 In patients with PET activity in a mediastinal lymph node and normal appearing nodes by CT (and no distant metastases), sampling of the mediastinum is recommended over staging by imaging alone.	(C)
	2.2.2.1 Percutaneous FNA, TTNB, guided bronchoscopy and VATS are all appropriate first-line modalities for tissue diagnosis of peripheral lung nodules.	(C)
Ago	2.2.2.2 While percutaneous TTNA/biopsy has a higher diagnostic yield, bronchoscopy (including guided approaches where available) may provide a diagnosis for peripheral lesions.	(B)
Radiology	2.2.3.1 In patients with clinical stage Ia tumours who are high risk surgical candidates, ablative techniques may be considered to achieve local control.	(D)
	2.2.4.1 Consider close follow-up for patients who have undergone treatment with curative intent (including surgery and radiotherapy), to include periodic radiological evaluation with CT.	(C)
	2.2.5.1 A negative PET-CT reliably excludes adrenal metastases in patients with NSCLC.	(B)
	2.2.5.2 In NSCLC patients with PET-CT positive for adrenal metastasis, histological confirmation should be considered unless there is overwhelming clinical and imaging evidence of widespread metastatic disease.	(B)
	2.2.5.3 In NSCLC patients with indeterminate adrenal lesions on PET-CT further assessment with adrenal specific CT or MRI criteria may be considered. If non-invasive imaging findings are indeterminate, adrenal sampling such as EUS-FNA, percutaneous biopsy or adrenalectomy may be considered.	(D)
	2.2.6.1 Offer patients with signs/symptoms suggestive of brain metastases a contrast-enhanced CT of the head followed by contrast-enhanced MRI if normal or MRI as an initial test.	(B)

Section	Recommendation	Grade
	2.2.6.2 Offer MRI or CT of the head in patients with stage III NSCLC selected for treatment with curative intent.	(C)
	2.2.6.3 Do not routinely offer imaging of the brain in patients with stage I and II NSCLC.	(C)
Radiology	2.2.7.1 For patients with NSCLC with suspected bone metastasis, evaluation with PET-CT is recommended over bone scintigraphy or CT.	(B)
Rad	2.2.7.2 Bone scintigraphy is not necessary when PET-CT has not shown bone metastases.	(B)
	2.2.8.1 In patients with clinically limited-stage small-cell lung cancer (SCLC), PET-CT is suggested to exclude occult metastases.	(C)
	2.2.9 Staging algorithm for patients with suspected lung cancer (Figure 2).	

Section	Recommendation	Grade
	2.3.1.1 Patients with central lesions (within proximal one-third of the hemithorax) alone (considered reachable by standard bronchoscopy) who are otherwise fit should undergo flexible bronchoscopy in order to establish a histological or cytological diagnosis.	(B)
	2.3.1.2 Visible tumours should be sampled using more than one technique to optimise sensitivity.	(B)
	2.3.1.3 Consider bronchoscopy to provide a diagnosis for peripheral lesions, although percutaneous FNA biopsy has a higher diagnostic yield.	(B)
ledicine	2.3.2.1 Endoscopic assessment of the mediastinal lymph nodes with EBUS-TBNA with or without EUS-FNA should be offered to patients with suspected lung cancer prior to mediastinoscopy.	(A)
Respiratory Medicine	2.3.3.1 In patients being considered for active therapy, pleural effusion should be investigated with pleural aspiration.	(C)
Res	2.3.3.2 If pleural fluid cytology is negative, and treatment will change depending on the nature of the pleural fluid, pleural biopsy using image guided or thoracoscopic biopsy is recommended.	(D)
	2.3.4.1 In lung cancer patients with symptomatic (including breathlessness, haemoptysis and cough) malignant airway obstruction, any of the following therapeutic interventions may be considered: bronchoscopic debulking, tumour ablation modalities, airway stent placement and radiotherapy (external beam or brachytherapy).	(D)
	2.3.5 Staging algorithm for patients with suspected lung cancer (Figure 3).	

Section	Recommendation	Grade
	2.4.1.1 Distinguishing between small-cell carcinoma and non-small cell carcinoma of the lung is recommended. For challenging cases, a diagnostic panel of immunohistochemical assays is recommended to increase the diagnostic accuracy.	(B)
	2.4.1.2 In individuals with pathologically diagnosed non-small cell lung cancer (NSLC), additional discrimination between adenocarcinoma and squamous cell carcinoma, even on cytologic material or small tissue samples is recommended.	(B)
gy	2.4.2.1 Endobronchial ultrasound rapid on-site evaluation (EBUS ROSE) should be made available whenever resources permit.	(B)
Pathology	2.4.2.2 Consider intra-operative frozen section analysis in primary diagnosis when preoperative diagnosis is not available.	(C)
	2.4.2.3 In selected cases intra-operative frozen section analysis for staging may be considered.	(C)
	2.4.3.1 Cytology samples can be used to provide material suitable for both NSCLC sub-typing and some molecular analysis, provided the samples are appropriately handled and processed.	(B)
	2.4.4.1 Fixation times of 6 to 12 hours for small biopsy samples and 8 to 18 hours for larger surgical specimens generally give best results, although expert consensus opinion is that fixation times of 6 to 48 hours should give acceptable results.	(D)

Section	Recommendation	Grade
	2.5.1.1 For patients with clinical stage I and II non-small cell lung cancer (NSCLC) who are medically fit for surgical resection, a lobectomy rather than sublobar resection is recommended.	(B)
	2.5.2.1 For patients with clinical stage I NSCLC, video-assisted thoracic surgery (thoracoscopy) should be considered as an alternative to thoracotomy for anatomic pulmonary resection.	(B)
Surgery	2.5.3.1 Pulmonary function testing (spirometry, diffusion capacity, lung volume) should be performed in all patients being considered for surgical resection.	(C)
Sur	2.5.3.2 Postoperative predictive values should be calculated using broncho-pulmonary segment counting. If a mismatch is suspected ventilation perfusion scan should be performed.	(C)
	2.5.3.3 Offer patients surgery if they have an $\text{FEV}_1 \& D_{LCO}$ within normal limits (postoperative predicted values >60%).	(C)
	2.5.3.4 Patients with ppo-FEV ₁ and/or D_{LCO} <30% should have formal cardiopulmonary exercise testing with measurement of VO ₂ max.	(C)

Section	Recommendation	Grade
	2.5.3.5 Patients with ppo-FEV ₁ and/or D_{LCO} >30% and <60% – supplementary functional exercise assessments should be considered.	(D)
	2.5.3.6 In patients with lung cancer being considered for surgery and a VO ₂ max <15 mL/kg/min predicted, it is recommended that they are counselled about minimally invasive surgery, sublobar resections or non-operative treatment options for their lung cancer.	(C)
	2.5.4.1 Lung cancer surgery remains the best opportunity for potential cure in patients with significant co-morbidity. Efforts to contain and manage that risk should start with preoperative scoring (thoracoscore) and should ideally include attendance at a preoperative assessment clinic, where practical.	(D)
	2.5.4.2 Seek a cardiology review in patients with an active cardiac condition or \geq 3 risk factors or poor cardiac functional capacity.	(C)
	2.5.4.3 Offer surgery without further investigations to patients with ≤2 risk factors and good cardiac functional capacity.	(B)
	2.5.5.1 Age >80 years should not automatically preclude surgery. Decisions should be based on oncological stage, co-morbidity and physiological testing.	(D)
Surgery	2.5.6.1 Multifocal In patients with suspected or proven multifocal lung cancer (without mediastinal or extrapulmonary disease), curative-intent treatment may be considered, following discussion at a multidisciplinary team meeting.	(D)
	2.5.6.2 Synchronous In patients with suspected or proven synchronous primary lung cancer (without mediastinal or extrapulmonary disease), curative-intent treatment may be considered, following discussion at a multidisciplinary team meeting.	(C)
	2.5.7.1 Systematic mediastinal lymph node dissection should be performed in all patients having a lung cancer resection.	(B)
	2.5.8.1 In patients with malignant pleural effusion whose symptoms improved following drainage, a number of options are available depending on performance status and documentation of lung re-expansion:	
	- In patients with good performance status with lung re-expansion, thoracoscopy with talc pleurodesis is recommended.	(C)
	- In patients with non-expandable lung, tunnelled catheters may be considered.	(C)
	- In patients with poor performance status with lung re-expansion, options include: tunnelled plerual catheter, serial thoracentesis, or bedside talc pleurodesis.	(D)
	2.5.9.1 In patients with an isolated brain metastasis and a synchronous resectable primary NSCLC, sequential resection of the primary tumour and definitive treatment of the brain metastasis may be considered, following discussion at a multidisciplinary team meeting.	(C)

Section	Recommendation	Grade
	2.5.9.2 In patients with an isolated adrenal metastasis and a synchronous resectable primary NSCLC, sequential resection of the primary tumour and definitive treatment of the adrenal metastasis may be considered, following discussion at a multidisciplinary team meeting.	(D)
Surgery	2.5.10.1 Consider surgery as part of multimodality management in patients with T1–3 N2 (non-fixed, non-bulky, single zone) M0 disease.	(C)
	2.5.11.1 Patients with clinical stage I small-cell lung cancer (SCLC) and excellent performance status may be considered for resection following extensive staging investigation as part of a multimodality treatment regimen.	(C)

Section	Recommendation	Grade
	2.6.1.1 Preoperative chemoradiotherapy For patients with non-small cell lung cancer (NSCLC) who are suitable for surgery, do not offer neoadjuvant chemoradiotherapy outside a clinical trial.	(B)
	2.6.1.2 Preoperative chemotherapy Following discussion at a multidisciplinary team meeting, appropriate patients with NSCLC who are suitable for surgery can be considered for neoadjuvant chemotherapy.	(A)
	2.6.2.1 Concurrent chemoradiotherapy should be administered to patients with locally advanced NSCLC (suitable for radical radiotherapy) who have a good performance status (0-1).	(A)
gy	2.6.3.1 Induction or consolidation chemotherapy are not routinely recommended for patients receiving concurrent radical chemoradiotherapy.	(B)
Medical Oncology	2.6.4.1 Effectiveness of first-line cytotoxic chemotherapy In patients with a good performance status (PS) (i.e. Eastern Cooperative Oncology Group [ECOG] level 0 or 1) and stage IV NSCLC, a platinum-based chemotherapy regimen is recommended based on the survival advantage and improvement in quality of life (QOL) over best supportive care (BSC).	(A)
	2.6.4.2 Effectiveness of first-line cytotoxic chemotherapy In patients with stage IV NSCLC and a good performance status, two-drug combination chemotherapy is recommended. The addition of a third cytotoxic chemotherapeutic agent is not recommended because it provides no survival benefit and may be harmful.	(A)
	2.6.4.3 Effectiveness of first-line cytotoxic chemotherapy In patients receiving palliative chemotherapy for stage IV NSCLC, it is recommended that the choice of chemotherapy is guided by histological type of NSCLC.	(B)
	2.6.4.4 Effectiveness of first-line cytotoxic chemotherapy Bevacizumab plus platinum-based chemotherapy may be considered an option in carefully selected patients with advanced NSCLC. Risks and benefits should be discussed with patients before decision making.	(B)

Section	Recommendation	Grade
	2.6.4.5 Effectiveness of first-line targeted therapy First-line single agent EGFR tyrosine kinase inhibitors (TKI) should be offered to patients with sensitising EGFR mutation positive NSCLC. Adding combination chemotherapy to TKI confers no benefit and should not be used.	(A)
	2.6.4.6 Effectiveness of first-line targeted therapy Crizotinib should be considered as first-line therapy in patients with ALK positive NSCLC tumours.	(B)
	2.6.5.1 In patients with stage IV non-squamous NSCLC who do not experience disease progression and have a preserved performance status after 4-6 cycles of platinum-based therapy, treatment with maintenance pemetrexed is suggested.	(B)
	2.6.5.2 In patients with stage IV NSCLC, switch maintenance therapy with chemotherapy agents other than pemetrexed has not demonstrated an improvement in overall survival and is not recommended.	(B)
	2.6.5.3 In patients with stage IV NSCLC who do not experience disease progression after 4-6 cycles of platinum-based double agent chemotherapy, there is insufficient evidence to recommend maintenance therapy with erlotinib.	(B)
cology	2.6.6.1 In elderly patients (age 70-79 years) with stage IV NSCLC who have good performance status and limited co-morbidities, treatment with a platinum doublet chemotherapy is recommended.	(B)
Medical Oncology	2.6.6.2 In patients with stage IV NSCLC with a performance status of 2, single agent chemotherapy may be considered. Platinum doublet chemotherapy is suggested over single agent chemotherapy if the performance status of 2 is cancer related rather than co-morbidity associated.	(B)
	2.6.6.3 Unfit patients of any age (performance status (3-4)) do not benefit from cytotoxic chemotherapy. However if patients harbor an EGFR or ALK mutation positive tumour, they may be considered for treatment with targeted therapies.	(C)
	2.6.7.1 Second-line systemic anticancer therapy (SACT) with single agent drugs should be considered. The choice of agent to be used should be made on a case by case basis taking into account previous treatment, mutation status and co-morbidities.	(B)
	2.6.8.1 In patients with either limited-stage or extensive-stage small-cell lung cancer (SCLC), platinum-based chemotherapy with either cisplatin or carboplatin plus etoposide is recommended.	(A)
	2.6.8.2 Non-platinum combinations can be considered in patients with limited-stage and extensive-stage SCLC.	(A)
	2.6.9.1 There is no data to support maintenance therapy in limited-stage or extensive-stage SCLC.	(C)
	2.6.10.1 In patients with relapsed refractory SCLC, second-line therapy should be considered.	(B)

18 | Diagnosis, staging and treatment of patients with lung cancer

Section	Recommendation	Grade
Medical Oncology	2.6.10.2 Re-initiation of the previously administered first-line chemotherapy regimen is recommended in patients with SCLC who relapse greater than six months from completion of initial chemotherapy.	(R)
Medical	2.6.10.3 Single agent chemotherapy should be considered in patients with primary refractory SCLC to maintain or improve quality of life.	(B)

Section	Recommendation	Grade
	2.7.1.1 Every patient with early stage disease (T1-T2 N0 M0) should be evaluated for fitness for surgery. If unfit for surgery, or surgery is declined, patients should be considered for radical treatment, preferably SBRT/SABR or radical radiotherapy.	(A)
	2.7.1.2 Radiofrequency ablation (RFA) can be considered for patients with clinical stage Ia tumours who are not suitable for surgery following discussion at a multidisciplinary team meeting. (<i>Refer to Clinical question 2.2.3</i>).	(D)
	2.7.2.1 In patients receiving combined chemoradiotherapy standard fractionation should be used to deliver a radical dose equivalent to 60 – 66 Gy.	(A)
	2.7.2.2 When a radical dose is considered 3D-CRT is the minimum technique to be used.	(B)
Oncology	2.7.2.3 When available, CHART can be considered in patients with non-operable stage I-III non- small cell lung cancer (NSCLC) not receiving chemotherapy.	(A)
Radiaton Oncology	2.7.3.1 Perform three-dimensional treatment planning in patients undergoing radical thoracic radiotherapy. 4DCT should be performed where available.	(B)
	2.7.3.2 The dose volume parameters for the organs at risk (e.g. oesophagus, lung) need to be taken into account. It is prudent to limit V_{20} to $\leq 30-35\%$ and mean lung dose to $\leq 20-23$ Gy (with conventional fractionation) if one wants to limit the risk of radiation pneumonitis to $\leq 20\%$ in definitively treated patients with NSCLC.	(B)
	2.7.4.1 In patients with R1 resection, regardless of N status, postoperative radiotherapy (PORT) should be proposed sequentially delivering a radical dose of 60 Gy in 30 fractions.	(B)
	2.7.4.2 In patients with a pN2 stage and a complete resection there is no consensus to the benefit of PORT. If considered, PORT should be delivered at a dose of 50 Gy standard fractionation.	(B)
	2.7.4.3 PORT is not indicated in patients with a complete resection R0 and N0 disease.	(B)

Section	Recommendation	Grade
	2.7.5.1 Consolidation prophylactic cranial irradiation (PCI) is recommended in patients with limited- stage small-cell lung cancer (SCLC) having a response to chemoradiotherapy.	(A)
Radiaton Oncology	2.7.5.2 In combined modality care, thoracic radiotherapy is recommended in patients with limited-stage SCLC and should be initiated as early as possible.	(A)
Radiaton	2.7.5.3 Consolidation PCI is recommended in patients with extensive-stage SCLC having a response to chemotherapy.	(A)
	2.7.5.4 Consolidation thoracic radiotherapy may be considered in patients with extensive-stage SCLC having a response to chemotherapy.	(A)

Section	Recommendation	Grade
Palliative Care	2.8.1.1 Patients with stage IV non-small cell lung cancer (NSCLC) should be offered concurrent specialist palliative care and standard oncological care at initial diagnosis.	(B)

Good practice point

Recommended best practice based on the clinical experience of the Guideline Development Group.

20 | Diagnosis, staging and treatment of patients with lung cancer

2.2 Radiology

The following are responsible for implementation of the radiology recommendation:

While the CEO, General Manager and the Clinical Director of the hospital have corporate responsibility for the implementation of the recommendations in this National Clinical Guideline, each member of the multidisciplinary team is responsible for the implementation of the individual guideline recommendations relevant to their discipline.

The literature used in the development of this guideline was based on the 7th edition of the Lung Cancer TNM staging system. The 8th edition of the TNM staging system was published in December 2016 (Brierley et al., 2016), this may lead to changes in recommendations over time, which should be taken into consideration at multidisciplinary team meetings.

In non-small cell lung cancer (NSCLC) patients with mediastinal and hilar adenopathy, what is the efficacy of CT (contrast and non-contrast) and PET-CT in the diagnosis of lung cancer?

Evidence summary

Two clinical guidelines (SIGN, 2014, NICE, 2011), and a Cochrane meta-analysis (Schmidt-Hansen et al., 2014) addressed this clinical question.

Two International guidelines (SIGN, 2014, NICE, 2011) recommend that patients with suspected lung cancer should undergo a contrast enhanced computed tomography (CT) (See Figure 2 'Staging algorithm in patients with suspected lung cancer'.)

"Contrast enhanced CT scanning of the chest and abdomen is recommended in all patients with suspected lung cancer, regardless of chest X-ray results." [SIGN, 2014]

"Patients with known or suspected lung cancer should be offered a contrast enhanced chest CT scan to further the diagnosis and stage the disease. The scan should also include the liver and adrenals." [NICE, 2011]

Hilar nodes (N1)

The reliability of CT, magnetic resonance imaging (MRI) and thoracoscopy in staging N1 nodes is poor (Roberts et al., 1999, Detterbeck and Jones, 2001, Glazer et al., 1985, Wain, 1993). This may be a concern if radical radiotherapy is being considered and the primary tumour is distant from the hilum. (SIGN, 2014)

CT scanning of mediastinal nodes (N2/3)

For all categories of patients with lung cancer, the reliability of CT in the assessment of mediastinal nodes is poor with average false positive and negative rates of 45% and 13% respectively (Detterbeck et al., 2001a). The false negative rate is higher with central tumours and adenocarcinomas (22% and 19%). (SIGN, 2014)

PET scanning of mediastinal nodes (N2/3)

18F-fluoro-2-deoxy-D-glucose positron emission tomography-computed tomography (FDG PET-CT) is more accurate than CT in detecting mediastinal nodal metastases in patients with NSCLC (Birim et al., 2005). The false negative rate of FDG PET in mediastinal nodes of 10 mm in short axis diameter on CT was very low (5%) (de Langen et al., 2006). (SIGN, 2014)

The false negative rate of FDG PET in mediastinal nodes >15 mm in short axis diameter on CT was relatively high (21%) (de Langen et al., 2006). These patients should have mediastinal nodal sampling before radical surgery, unless FDG PET-CT reveals distant metastases.

FDG PET-CT staging may be limited by the pathology type, metabolic activity and location of the primary tumour, and status of the hilar nodes. Mediastinal nodal sampling may be considered in patients with central tumours, low FDG uptake in the primary tumour, PET positive N1 node, or enlarged nodes on CT (ACCP, 2007, De Leyn et al., 2007). (SIGN, 2014)

The specificity of FDG PET in mediastinal nodal staging is approximately 80% (Silvestri et al., 2007). Given a relatively high false positive rate, FDG PET positive mediastinal nodes should be confirmed with nodal sampling, if this will alter management (Silvestri et al., 2007). (SIGN, 2014)

A Cochrane report (Schmidt-Hansen et al., 2014) included 45 prospective and retrospective studies that assessed the diagnostic accuracy of integrated PET-CT for diagnosing N2 disease in patients with

22 | Diagnosis, staging and treatment of patients with lung cancer

suspected resectable NSCLC. Two primary analyses were conducted as the criteria for test positivity – activity > background and SUVmax \geq 2.5. The summary sensitivity and specificity estimates for activity > background test positivity were 77.4% (95% CI 65.3 to 86.1) and 90.1% (95% CI 85.3 to 93.5), respectively. The summary sensitivity and specificity estimates for SUVmax \geq 2.5 were 81.3% (95% CI 70.2 to 88.9) and 79.4% (95% CI 70 to 86.5), respectively. Substantial heterogeneity was observed in both analyses. The study concluded that the sensitivity and specificity although reasonable, is insufficient to allow management based on PET-CT alone. PET-CT should form part of a clinical pathway supported by other investigations and cannot be used as a stand-alone test.

Recommendation 2.2.1.1	Grade
Contrast enhanced CT scanning of the chest and upper abdomen to include the entire liver is recommended in all patients with suspected lung cancer, regardless of chest X-ray results.	В

Recommendation 2.2.1.2	Grade
A tissue diagnosis of lung cancer should not be inferred from CT appearances alone.	D

Recommendation 2.2.1.3	Grade
PET-CT is recommended for mediastinal and hilar lymph node staging in patients with	C
potentially radically treatable non-small cell lung cancer (NSCLC) prior to invasive staging.	Ľ

Recommendation 2.2.1.4	Grade
In patients with PET activity in a mediastinal lymph node and normal appearing nodes by CT (and no distant metastases), sampling of the mediastinum is recommended over	С
staging by imaging alone.	

Good practice point

In the presence of hilar and mediastinal PET positive adenopathy the highest stage node should be biopsied to confirm metastic spread.

In patients with peripheral lung nodules, what is the efficacy of the following tests in the diagnosis of lung cancer?

- Percutaneous fine needle aspiration (FNA) and transthoracic needle biopsy (TTNB)
- Guided bronchoscopy
- Video-assisted thoracoscopic surgery (VATS)

Evidence summary

Two clinical guidelines (SIGN, 2014, NICE, 2011), a meta-analysis (Wang Memoli et al., 2012) and a systematic review (Yao et al., 2012) addressed this clinical question.

Percutaneous fine needle aspiration and Transthoracic needle biopsy

Transthoracic needle biopsy is used to obtain diagnostic samples from lesions that are not accessible via the bronchial tree and where there is no obvious lymph node involvement. This is usually where there are one or more peripheral lesions. CT is used to guide biopsy where lesions are in difficult to reach locations or where they are completely surrounded by aerated lung. Ultrasound is used where the lesion abuts the chest wall and is visible on ultrasound. (NICE, 2011)

Percutaneous FNA/biopsy is a highly sensitive technique for diagnosing lung cancer (sensitivity of 88–92%) (Schreiber and McCrory, 2003, Detterbeck and Rivera, 2001b). Fine needle aspirations can be guided by fluoroscopy, ultrasound, CT or MRI. Larger cutting needles can also be used to obtain biopsy cores of intact tissue for histology. Sensitivity is greater for peripheral lung lesions than fibre optic bronchoscopy (Detterbeck and Rivera, 2001b). There is a high false negative rate (25%) resulting in limited ability to confirm a benign diagnosis. This may be improved by using core biopsies for histology rather than aspirates for cytology (Detterbeck and Rivera, 2001b). (SIGN, 2014)

Yao et al. (2012) performed a systematic review which compared fine needle aspiration biopsy (FNA) with core-needle biopsy (CB) for diagnostic characteristics and yields for diagnosing lung cancer in patients with lung lesions. For overall diagnostic characteristics (benign vs. malignant) of FNA and CB, the ranges of sensitivity, specificity and of accuracy are displayed in Table 1. For specific diagnostic characteristics of FNA and CB (identifying the histologic subtype of malignancies or the specific benign diagnoses), the ranges of sensitivity, specificity and of accuracy are displayed in Table 2. Compared with FNA, CB did not result in a higher complication rate (pneumothorax or haemoptysis).

Table 1. Overall diagnostic characteristics (beingir vs. maighant) of the and eb			
	Fine needle aspiration biopsy	Core-needle biopsy	
Sensitivity	81.3%-90.8%	85.7%-97.4%	
Specificity	75.4%-100.0%	75.4%-100.0% 88.6%-100.0%	88.6%-100.0%
Accuracy	79.7%-91.8%	89.0%-96.9%	

Table 1. Overall diagnostic	c characteristics (benign vs.	malignant) of FNA and CB

Table 2. For specific diagnostic chara	acteristics of FNA and CB
--	---------------------------

Fine needle aspiration biopsy Core-needle biopsy		Core-needle biopsy
Sensitivity	56.3%-86.5%	56.5%-88.7%
Specificity	6.7%-57.1%	52.4%-100.0%
Accuracy	40.4%-81.2%	66.7%-93.2%

Guided bronchoscopy

A recent meta-analysis (Wang Memoli et al., 2012) was undertaken to determine the overall diagnostic yield of guided bronchoscopy using one or a combination of electromagnetic navigation bronchoscopy (ENB), virtual bronchoscopy (VB), radial endobronchial ultrasound (R-EBUS), ultrathin bronchoscope, and guide sheath. A total of 3,052 lesions from 39 studies were included. The pooled diagnostic yield was 70%, which is higher than the yield for traditional transbronchial biopsy. The yield increased as the lesion size increased. The pneumothorax rate was 1.5%, which is significantly smaller than that reported for transthoracic needle aspiration (TTNA). The results showed that the diagnostic yield of guided bronchoscopic techniques is better than that of traditional transbronchial biopsy. Although the yield remains lower than that of TTNA, the procedural risk is lower. However guided bronchoscopy allows both sampling of mediastinal lymph nodes and peripheral lung nodules in appropriately selected patients during the same procedure. Guided bronchoscopy may be an alternative or be complementary to TTNA for tissue sampling of pulmonary nodules, but further study is needed to determine its role in the evaluation of peripheral pulmonary lesions.

Flexible bronchoscopy has a lower diagnostic sensitivity for peripheral lesions compared with central lesions. Fluoroscopy may improve the diagnostic yield of bronchoscopy in sampling peripheral lesions but diagnostic yield remains lower than TTNA/biopsy (Detterbeck and Rivera, 2001a, Schreiber and McCrory, 2003). (SIGN, 2014)

Video-assisted thoracoscopic surgery

VATS provides a highly sensitive (97–100%) method of obtaining histological and cytological material for confirmation of the diagnosis of lung cancer in patients with pleural effusions or peripheral lesions where this has not been possible to achieve by other less invasive means. It is also a sensitive method of obtaining material intraoperatively prior to definitive resection (Mack et al., 1993, Mitruka et al., 1995). It has a low complication rate (0.8% open conversion rate). (SIGN, 2014)

VATS should be performed by a well trained thoracic surgeon with extensive open experience in a recognised VATS unit (Ferguson and Walker, 2006). (SIGN, 2014)

While the above options are acceptable (see Figure 2 - 2.2.9 Staging algorithm for patients with suspected lung cancer), they will depend on multiple factors including; patient comorbidities, patient preference, local availability and expertise and size and location of the nodule.

Recommendation 2.2.2.1	Grade
Percutaneous FNA, TTNB, guided bronchoscopy and VATS are all appropriate first-line modalities for tissue diagnosis of peripheral lung nodules.	

Rec	ommendation 2.2.2.2	Grade
	le percutaneous TTNA/biopsy has a higher diagnostic yield, bronchoscopy (including led approaches where available) may provide a diagnosis for peripheral lesions.	В

Good practice point

In the presence of hilar and mediastinal PET positive adenopathy the highest stage node should be biopsied to confirm metastatic spread.

In NSCLC patients with early stage disease who are high risk surgery candidates, what is the effectiveness of ablative techniques?

Evidence summary

A clinical guideline (Lim et al., 2010) and two retrospective studies (Lanuti et al., 2012, Hiraki et al., 2011) addressed this clinical question.

Radiofrequency ablation (RFA) for primary lung tumours has developed as a minimally invasive treatment for both radical treatment and palliation. It is well tolerated and complication rates are low. The treatment can be delivered in a single session, usually requiring only a short admission. RFA is suitable for small tumours, usually of 3 cm diameter or less, although larger lesions may be considered suitable in certain circumstances. (Lim et al., 2010)

No data have been published so far on the combination of RFA with chemotherapy for early stage nonsmall cell lung cancer. (Lim et al., 2010)

Lanuti et al. (2012) performed 55 ablations in 45 patients (age, 51 to 89 years) with stage I NSCLC. At a median follow-up of 32 months, locoregional recurrence (LRR) occurred in 21 (38%) within a mean of 12±10 (range, 1-44) months from RFA. Recurrence was observed locally in the tumour bed in 18 (33%), in regional nodes in 4 (7%), and distant in 2 (4%). The mean maximal tumour diameter was 2.3±1.3 (range, 0.7 to 4.5) cm. In tumours exceeding 3 cm, 10 (80%) were associated with LRR. Recurrent lesions were treated with repeat RFA (5), radiotherapy (8), chemoradiotherapy (5), and chemotherapy (2). Local control was achieved by repeat RFA in 2 of 5 (40%) or by radiotherapy in 8 lesions (100%), with 2 regional nodal failures (median follow-up, 40±13 months). Overall survival among patients who did or did not experience LRR was similar (32% to 35%). Repeat RFA was not associated with any significant complications or procedure-related 30-day mortality. The authors concluded lung RFA is associated with increased rates of local failure in tumours exceeding 3 cm and in contact with larger segmental vessels. However, patients with local failure can be promptly salvaged with stereotactic ablative radiation therapy (SBRT/SABR) or repeat RFA, without detriment to overall survival.

A retrospective cohort study (Hiraki et al., 2011) comprising of 50 non-surgical candidates (29 men and 21 women; mean age, 74.7 years) with clinical stage I (Ia, n = 38; Ib, n = 12) histologically proven non–small cell lung cancer treated a total of 52 tumours with 52 ablation sessions. The median follow-up period was 37 months. Local progression was observed in 16 (31%) of the 52 tumours. The median survival time was 67 months. The overall, cancer-specific, and disease-free survivals were 94%, 100%, and 82% at 1 year, 86%, 93%, and 64% at 2 years, and 74%, 80%, and 53% at 3 years, respectively. The authors concluded RFA of clinical stage I non–small cell lung cancer was minimally invasive and provided promising patient survival, although the local efficacy needs to be improved.

Recommendation 2.2.3.1	Grade
In patients with clinical stage Ia tumours who are high risk surgical candidates, ablative	D
techniques may be considered to achieve local control.	U

Good practice point

Radiofrequency ablation should only be considered for patients following discussion at a multidisciplinary team meeting.

For patients with NSCLC who have undergone surgical resection or radiotherapy with curative intent, is there a role for imaging surveillance?

Evidence summary

A meta-analysis (Calman et al., 2011) addressed this clinical question.

A meta-analysis examined the role of follow-up in patients with lung cancer (Calman et al., 2011). The study included eight observational studies and one randomised trial, the primary outcomes were overall survival and survival comparing symptomatic and asymptomatic recurrence. Six studies examined survival in patients with lung cancer comparing more intensive versus less-intensive follow-up programmes (Benamore et al., 2007, Moore et al., 2002, Sugiyama et al., 2008, Younes et al., 1999, Virgo et al., 1995, Zieren et al., 1994). The studies of follow-up care after potentially curative resection included patients with stages I to III disease, reflecting the stage of disease deemed appropriate for curative intent treatment. They showed a general trend for improvement in survival favoured more intensive follow-up: Hazard Ratio (HR) 0.83 (0.66 –1.05), but this was not statistically significant (p=0.13). Between-study heterogeneity was low. High rates of relapse (between 21% and 71%) were reported even when curative treatment was intended. In the curative intent subgroup, all the studies found that asymptomatic recurrence was associated with a significantly longer survival time: HR 0.61 (0.50–0.74) (p<0.01), with a low level of heterogeneity. The study concluded that there is scope for further research in lung cancer follow-up of patients after different treatment regimes.

Recommendation 2.2.4.1	Grade
Consider close follow-up for patients who have undergone treatment with curative intent	C
(including surgery and radiotherapy), to include periodic radiological evaluation with CT.	C

Good practice point

The evidence for this practice is limited and the optimal scanning interval remains to be determined.

Good practice point

Schedule choice of radiological investigation should be discussed at multidisciplinary team meeting, and follow-up should include clinical evaluation with consideration of symptoms, quality of life, co-morbidities and smoking cessation (see Tools on smoking cessation in Appendix 3: Summary of the tools to assist in the implementation of this National Clinical Guideline).

Good practice point

Patients should be advised of the benefits of smoking cessation.

For patients with NSCLC which of the following tests is most accurate for detecting metastatic spread to indeterminate adrenal nodules/masses: chemical shift MRI, non-contrast CT, PET-CT?

Evidence summary

A current guideline (SIGN, 2014) addressed this clinical question.

An adrenal adenoma can be reliably diagnosed by chemical shift magnetic resonance imaging (MRI), unenhanced computed tomography (CT) and delayed contrast-enhanced CT, making these suitable techniques for excluding metastases (Detterbeck et al., 2001b, Detterbeck et al., 2001c). Percutaneous needle biopsy has an overall complication rate of 8-9% with 3-4% having major complications (e.g. pneumothorax or significant haemorrhage) (Welch et al., 1994). At less than 5%, positron emission tomography (PET) scanning appears to have the lowest false positive (FP) and false negative (FN) rates for adrenal metastases (Detterbeck et al., 2001c). (SIGN, 2014)

In a meta-analysis, FDG positron emission tomography-computed tomography (PET-CT) was found to be highly sensitive (97%) and specific (91%) in differentiating malignant from benign adrenal disease although studies were highly heterogeneous (Boland et al., 2011). Although FDG PET-CT interpretation criteria varied, there was no significant difference in their accuracy. Several primary studies also showed high sensitivity and specificity of FDG PET-CT in adrenal staging in lung cancers (Cho et al., 2011, Lu et al., 2010). No trials of head- to-head comparison of PET-CT, MRI and ultrasound were identified. (SIGN, 2014)

High FDG activity in an adrenal mass has high specificity for metastasis although there are variations in FDG PET-CT interpretation criteria (visual analysis, standardised uptake value (SUV), SUV ratio etc) (Boland et al., 2011, Lu et al., 2010, Brady et al., 2009, Kumar et al., 2004). EUS-FNA has also been shown to be effective in adrenal staging especially of the left adrenal gland (Bodtger et al., 2009, DeWitt et al., 2007). (SIGN, 2014)

Recommendation 2.2.5.1	
A negative PET-CT reliably excludes adrenal metastases in patients with NSCLC.	
Recommendation 2.2.5.2	Grade
In NSCLC patients with PET-CT positive for adrenal metastasis, histological confirmation should be considered unless there is overwhelming clinical and imaging evidence of widespread metastatic disease.	В

Recommendation 2.2.5.3	Grade
In NSCLC patients with indeterminate adrenal lesions on PET-CT further assessment with adrenal specific CT or MRI criteria may be considered. If non-invasive imaging findings are indeterminate, adrenal sampling such as EUS-FNA, percutaneous biopsy or adrenalectomy may be considered.	D

For patients with NSCLC which of the following tests is most accurate for detecting brain metastases: MRI, CT, PET-CT?

Evidence summary

Two clinical guidelines (SIGN, 2014, Lim et al., 2010) addressed this clinical question.

СТ

Contrast-enhanced CT is the most commonly used imaging method to detect brain metastases and is as reliable as non-contrast-enhanced MRI (Hatter et al., 1994, Kormas et al., 1992, Ichinose et al., 1989, Ferrigno and Buccheri, 1994, Akeson et al., 1995, Taphoorn et al., 1989, Sze et al., 1988, Davis et al., 1991). Contrast-enhanced MRI will detect more metastases than contrast-enhanced CT but does not detect metastases in a greater number of patients. CT of the head is not warranted in asymptomatic patients initially staged as clinical stage I-II (Kormas et al., 1992, Ichinose et al., 1989). In patients with N2 disease who are still being considered for curative treatment, a CT scan of the head is warranted (Kormas et al., 1992). (SIGN, 2014)

MRI

MRI of the brain detects more and smaller lesions than CT (Yokoi et al., 1999, Davis et al., 1991). The prevalence of cerebral metastases may be influenced by both stage and cell type. In patients with clinical features suggestive of intracranial pathology, CT may be the preferred first test because it is generally more easily accessed than MRI. However, a normal CT scan of the head should always be followed by an MRI owing to the better sensitivity of MRI. The use of routine MRI in staging patients with negative clinical evaluation findings has not been adequately studied. In the post-PET era it may be prudent to consider cerebral imaging, using contrast-enhanced MRI or CT if contraindicated, in patients with stage III non-small cell lung cancer. (Lim et al., 2010)

PET-CT

The main limitations of PET–CT scanning is that high glucose metabolism in the brain and kidney makes evaluation of metastases at these sites difficult and unreliable. (SIGN, 2014)

Recommendation 2.2.6.1	Grade
Offer patients with signs/symptoms suggestive of brain metastases, a contrast-enhanced CT of the head followed by contrast-enhanced MRI if normal or MRI as an initial test.	В
Performendation 2.2.6.2	

Recommendation 2.2.6.2	Grade	
Offer MRI or CT of the head in patients with stage III NSCLC selected for treatment with	C	
curative intent.	C	

Recommendation 2.2.6.3	Grade
Do not routinely offer imaging of the brain in patients with stage I and II NSCLC.	С

For patients with NSCLC which of the following tests is most accurate for detecting bone metastases: isotope bone scan, CT, MRI, PET-CT?

Evidence summary

Clinical guidelines (SIGN, 2014, NICE, 2011, Lim et al., 2010) addressed this clinical question.

Bone Scanning

Four studies of low to moderate quality examined the accuracy of bone scintigraphy \pm single-photon emission computed tomography (SPECT) in detecting bone metastases due to lung cancer (Cheran et al., 2004, Hetzel et al., 2003, Song et al., 2009, Takenaka et al., 2009). The sensitivity, specificities and accuracies of bone scintigraphy reported by these studies ranged between 52-96%, 83-99% and 81-95%, respectively. (NICE, 2011)

Technetium-99m (99mTc) bone scanning has a high false positive rate (30 to 60%). Compared to conventional isotope bone scanning, PET-CT is more specific and sensitive (NICE, 2011). Tc-99m nuclear bone scans may be helpful if a PET scan is not indicated and symptoms of bone metastases are present. A positive bone scan should be confirmed by additional studies (e.g. X-ray, MRI, biopsy). (SIGN, 2014)

PET is more sensitive in detecting bone metastases than conventional bone scintigraphy (Hsia et al., 2002), and PET-CT is likely to be superior. The role of bone scintigraphy is limited to those with a high clinical suspicion of metastatic disease as a positive result will effectively exclude a patient from further radical treatment. (Lim et al., 2010)

PET-CT

Two studies of low-moderate quality examined the accuracy of PET-CT in M-staging (Song et al., 2009, Takenaka et al., 2009), and found that the sensitivities, specificities and overall accuracy of PET-CT to be between 94-96%, 86-99% and 89-98% for bone metastases detection, respectively (NICE, 2011).

MRI

One study (Takenaka et al., 2009) examined the ability of MRI to detect bone metastases and reported sensitivities, specificities and accuracies of 64-96%, 79-90% and 83-91%, respectively, for bone metastasis detection. (NICE, 2011)

MRI has an established role in problem solving isolated boney abnormalities identified by other imaging.

Recommendation 2.2.7.1	Grade
For patients with NSCLC with suspected bone metastasis, evaluation with PET-CT is recommended over bone scintigraphy or CT.	В

Recommendation 2.2.7.2	Grade
Bone scintigraphy is not necessary when PET-CT has not shown bone metastases.	В

In patients with limited-stage small-cell lung cancer (SCLC) on diagnostic CT, does PET-CT change management?

Evidence summary

A meta-analysis (Gould et al., 2001), two prospective studies (Brink et al., 2004, Bradley et al., 2004) and a focused review (Kalemkerian and Gadgeel, 2013) addressed this clinical question.

A meta-analysis to estimate the diagnostic accuracy of FDG-PET for malignant focal pulmonary lesions (Gould et al., 2001) found FDG-PET is an accurate non-invasive imaging test for diagnosis of pulmonary nodules and larger mass lesions, although few data exist for nodules smaller than 1 cm in diameter. In current practice, FDG-PET has high sensitivity and intermediate specificity for malignancy.

Brink et al. (2004) performed FDG-PET in 120 consecutive patients with SCLC during primary staging. Complete agreement between FDG-PET results and other staging procedures was observed in 75 patients. Differences occurred in 45 patients at 65 sites. In 47 sites the FDG-PET results were proven to be correct, and in ten, incorrect. In the remaining eight sites, the discrepancies could not be clarified. In 14/120 patients, FDG-PET caused a stage migration, correctly upstaging ten patients to extensive disease and downstaging three patients by not confirming metastases of the adrenal glands previously suspected on CT. Only 1/120 patients was incorrectly staged by FDG-PET, owing to failure to detect brain metastases. In all cases the stage migration led to a significant change in the treatment protocol. Sensitivity of FDG-PET was significantly superior to that of CT in the detection of extrathoracic lymph node involvement (100% vs 70%, specificity 98% vs 94%) and distant metastases except to the brain (98% vs 83%, specificity 92% vs 79%). However, FDG-PET was significantly less sensitive than cranial MRI/CT in the detection of brain metastases (46% vs 100%, specificity 97% vs 100%).

Bradley et al. (2004) prospectively performed pretreatment FDG-PET on 24 patients determined by conventional staging methods to have limited-stage SCLC. FDG-PET correctly upstaged two (8.3%) of 24 patients to extensive-stage disease (95% CI, 1.03% to 27.0%). PET correctly identified tumour in each SCLC mass (primary or nodal) that was suspected on CT imaging, thus giving a lesion-based sensitivity relative to CT of 100%. PET identified unsuspected regional nodal metastasis in six (25%) of 24 patients, and the radiation therapy plan was significantly altered to include the PET-positive/CT-negative nodes within the high-dose region in each of these patients. The authors concluded FDG-PET has high sensitivity for SCLC and appears to be of value for initial staging and treatment planning of patients with presumed limited-stage disease.

A focused review published in the Journal of the National Comprehensive Cancer Network (Kalemkerian and Gadgeel, 2013) included 14 studies comparing pretreatment FDG-PET with conventional staging procedures for the initial staging of patients with SCLC. Seven studies evaluated changes in initial management based on PET-CT in patients with SCLC (Kamel et al., 2003, Bradley et al., 2004, Blum et al., 2004, Kut et al., 2007, van Loon et al., 2008, van Loon et al., 2010). Overall, PET findings led to a change in initial management in 28% (range, 0%–47%) of 211 patients. Of the 59 patients with a change in management, 32% underwent an alteration in the general treatment plan as a result of stage shift, whereas 68% had changes in the extent of the radiation field for the treatment of limited-stage SCLC. The study concluded that PET-CT can improve both staging accuracy and treatment planning in patients with SCLC, although further prospective studies are needed to fully define its role.

Recommendation 2.2.8.1

In patients with clinically limited-stage small-cell lung cancer (SCLC), PET-CT is suggested to exclude occult metastases.

2.2.9 Staging algorithm for patients with suspected lung cancer

Figure 2. Staging algorithm in patients with suspected lung cancer. Modified from (Thomas and Gould, 2016).

For explanatory notes, see over page.

32 | Diagnosis, staging and treatment of patients with lung cancer

- * Please note that this refers to the 7th edition of the IASLC TNM staging system.
- **\$** Definitions:

Peripheral lesions	Normal mediastinal and N1 nodes (<1cm) and a peripheral tumour (within outer two-thirds of hemithorax) (Silvestri et al., 2013).
Central lesions	Normal mediastinal nodes (<1cm) but enlarged N1 nodes (\ge 1cm) or a central tumour (with proximal one-third of the hemithorax) (Silvestri et al., 2013).
Bulky nodal disease	Correlates with the radiographic group A, as described in the American College of Chest Physicians (ACCP) evidence-based Clinical Practice Guidelines (Silvestri et al., 2013). This group is defined as mediastinal infiltration, where the discrete lymph nodes cannot be distinguished or measured.
Discrete nodal disease	Correlates to radiographic group B, as described in the American College of Chest Physicians (ACCP) evidence-based Clinical Practice Guideline (Silvestri et al., 2013). This group is defined as patients with mediastinal node enlargement, in whom the size of the discrete nodes can be measured.

Δ Mediastinoscopy/video assisted mediastinoscopy/extended cervical mediastinoscopy/oesophageal ultrasound

2.3 Respiratory Medicine

Responsibility for the implementation of respiratory medicine recommendations

While the CEO, General Manager and the Clinical Director of the hospital have corporate responsibility for the implementation of the recommendations in this National Clinical Guideline, each member of the multidisciplinary team is responsible for the implementation of the individual guideline recommendations relevant to their discipline.

The literature used in the development of this guideline was based on the 7th edition of the Lung Cancer TNM staging system. The 8th edition of the TNM staging system was published in December 2016 (Brierley et al., 2016), this may lead to changes in recommendations over time, which should be taken into consideration at multidisciplinary team meetings.

What is the efficacy of bronchoscopy in identifying lung cancer?

Evidence summary

A clinical guideline (SIGN, 2014) addressed this clinical question.

The value of bronchoscopy depends on the location of the primary tumour. Peripheral tumours in subsegmental bronchi may not be visible. (SIGN, 2014)

The evidence base for the role of bronchoscopy in both central and peripheral tumours comes from two large systematic reviews (Detterbeck and Rivera, 2001a, Schreiber and McCrory, 2003). (SIGN, 2014)

Central tumours

Central lesions are defined as normal mediastinal nodes (<1cm) but enlarged N1 nodes (\geq 1cm) or a central tumour (within proximal one-third of the hemithorax) (Silvestri et al., 2013).

Flexible bronchoscopy has good diagnostic sensitivity (83% to 88%) for central lesions (Detterbeck and Rivera, 2001a, Schreiber and McCrory, 2003). Sampling using multiple techniques gives the highest diagnostic yield. As a single procedure, bronchial biopsy is the most reliable. Table 3 shows the variation in sensitivity for each method. (SIGN, 2014)

Technique	% Sensitivity		
	Detterbeck and Rivera, 2001a	Schreiber et al., 2003	
Biopsy	83	74	
Brushing	64	59	
Washing	48	48	
All three modalities	83	88	

Table 3. Percentage diagnostic sensitivity in central tumours

Peripheral tumours

Peripheral lesions are defined as normal mediastinal and N1 nodes (<1cm) and a peripheral tumour (within outer two-thirds of hemithorax) (Silvestri et al., 2013).

Flexible bronchoscopy has a lower diagnostic sensitivity for peripheral lesions compared with central lesions (see Table 3 and Table 4). Fluoroscopy may improve the diagnostic yield of bronchoscopy in sampling peripheral lesions but diagnostic yield remains lower than percutaneous fine needle aspiration (FNA) biopsy (Detterbeck and Rivera, 2001a, Schreiber and McCrory, 2003). (SIGN, 2014)

Table 4. Percentage diagnostic sensitivity	' in	peripheral	tumours
--	------	------------	---------

Technique	% Sensitivity		
	Detterbeck and Rivera, 2001a	Schreiber et al., 2003	
Biopsy	60	46	
Brushing	48	52	
Washing	37	43	
All three modalities	66	69	
| Diagnosis, staging and treatment of patients with lung cancer

There is international consensus (Detterbeck et al., 2013, Sanchez de Cos et al., 2011, De Leyn et al., 2014) that patients with a central lesion and radiographically normal mediastinum by PET-CT should undergo EBUS evaluation (See Figure 3 'Staging algorithm for patients with suspected lung cancer').

Recommendation 2.3.1.1	Grade
Patients with central lesions (within proximal one-third of the hemithorax) alone (considered reachable by standard bronchoscopy) who are otherwise fit should undergo flexible bronchoscopy in order to establish a histological or cytological diagnosis.	В

Recommendation 2.3.1.2	Grade
Visible tumours should be sampled using more than one technique to optimise sensitivity.	В

Recommendation 2.3.1.3	Grade
Consider bronchoscopy to provide a diagnosis for peripheral lesions, although percutaneous FNA biopsy has a higher diagnostic yield.	В

Good practice point

In patients with central lesions and negative mediastinum on PET-CT, consideration should be given to EBUS evaluation of mediastinum before definitive therapy.

In patients with mediastinal adenopathy: What is the efficacy of EBUS, EBUS/EUS and mediastinoscopy in the diagnosis of lung cancer?

Evidence summary

Two clinical guidelines (SIGN, 2014, Lim et al., 2010) addressed this clinical question.

Endoscopic sampling of the mediastinal lymph nodes

Assessing the mediastinum with endobronchial ultrasound fine needle aspiration (EBUS-FNA) and endoscopic ultrasound fine needle aspiration (EUS-FNA) offers a less invasive technique with higher sensitivity (94% vs 79%) and negative predicted probability (93% vs 86%) than surgical staging alone (Sharples et al., 2012). The technique is associated with low risk and less need for general anaesthesia and thoracotomy. The use of these techniques readily allows for repeat sampling of the mediastinum which is simpler than repeat mediastinoscopy (Yasufuku et al., 2011). (SIGN, 2014)

Mediastinoscopy

The indications for cervical mediastinoscopy have evolved with the increasing availability of PET, EBUS, EUS and broader selection criteria for surgery. With a sensitivity of 85% for PET imaging, many consider that confirmatory mediastinoscopy and lymph node biopsies are not required following a 'negative' PET. Microscopic N2 disease may have a better prognosis, but this will only be confirmed if appropriate lymph node sampling is performed. Although the specificity of PET is high, minimally invasive sampling followed by mediastinoscopy is indicated to screen for false positive results in order not to deny the small proportion of patients the potential of radical treatment. As broader selection criteria are in place, the clinical utility of pretreatment lymph node staging has evolved to assess the location and number of lymph stations that are involved rather than the presence or absence of mediastinal lymph node metastases. (Lim et al., 2010)

Anterior mediastinotomy/mediastinoscopy

Anterior mediastinotomy/mediastinoscopy may be used to establish a tissue diagnosis in selected patients presenting with mediastinal or hilar masses where this has not been achieved by other less invasive means (Best et al., 1987). (SIGN, 2014)

Recommendation 2.3.2.1	Grade
Endoscopic assessment of the mediastinal lymph nodes with EBUS-TBNA with or without EUS-FNA should be offered to patients with suspected lung cancer prior to mediastinoscopy.	Λ

Good practice point

Negative EBUS does not entirely exclude nodal disease. Surgical staging is still indicated where EBUS-TBNA (EBUS-FNA) is negative if clinical suspicion of mediastinal nodal disease remains high.

In patients with pleural effusion and suspected lung cancer, what is the efficacy of pleural sampling in the diagnosis of lung cancer?

Evidence summary

A clinical guideline (SIGN, 2014) and a retrospective diagnostic study (Bielsa et al., 2008) addressed this clinical question.

Pleural aspiration is essential for accurate staging in patients with a pleural effusion. A pleural biopsy should be undertaken in patients with negative fluid cytology (Dales et al., 1990). Some patients may require thoracoscopic biopsy to confirm pleural malignancy as aspiration and closed biopsy alone may be insufficient. (SIGN, 2014)

In instances where the first cytological analysis is not conclusive, a retrospective analysis of 1,427 patients with pleural effusion, including 466 patients with malignant pleural effusion (Bielsa et al., 2008) concluded that at least one more specimen should be submitted immediately for cytologic analysis and that delaying this secondary analysis will lead to a low diagnostic yield.

Since cytological examination of aspirated effusion fluid may provide a cytological diagnosis, it should be performed, rather than fluid being discarded. When cytological examination fails to confirm malignancy, both radiologically guided biopsy procedures and thoracoscopic biopsy are equally effective with similar diagnostic yields (87.5–94.1%) (Metintas et al., 2010). (SIGN, 2014)

Recommendation 2.3.3.1	Grade
In patients being considered for active therapy, pleural effusion should be investigated	C
with pleural aspiration.	Ľ

Recommendation 2.3.3.2	Grade
If pleural fluid cytology is negative, and treatment will change depending on the nature of the	р
pleural fluid, pleural biopsy using image guided or thoracoscopic biopsy is recommended.	U

Good practice point

Aim for 50 ml of pleural fluid and cell block preparation.

What is the role of palliative interventions in the management of malignant airway obstruction?

Evidence summary

A clinical guideline (NICE, 2011) and an UpToDate[®] review (Herth et al., 2016) addressed this clinical question.

There are a range of treatments to prevent or treat airway obstruction including conventional external beam radiotherapy, endobronchial surgical debulking of the cancer, stenting and endoscopic endobronchial treatments.

Choosing among the interventions is dependent upon factors including the nature of the lesion, predicted response to therapy, operator experience, available expertise, patient prognosis or health status, patient preference, and the ability of the patient to tolerate a selected procedure (Ernst et al., 2004, Bolliger et al., 2002, Ernst et al., 2003, Stephens and Wood, 2000, Seijo and Sterman, 2001). (Herth et al., 2016 - UpToDate[®]).

Endobronchial surgical debulking of the cancer can be undertaken using either rigid or flexible bronchoscopy. Advantages of rigid bronchoscopic procedures under general anaesthesia include the ability to remove large pieces of cancer, maintain adequate ventilation, and allow control of large volume haemorrhage. Nonetheless, flexible bronchoscopy is increasingly used for debulking procedures. These treatments are usually given to palliate symptoms and improve quality of life, but in some patients, relief of endobronchial obstruction will allow assessment for subsequent treatment with curative intent. (NICE, 2011)

Endobronchial techniques available are either a) used to debulk the cancer (brachytherapy, electrocautery, cryotherapy, thermal laser ablation and photodynamic therapy) or b) used to maintain/ re-establish airway patency (endobronchial stenting). Thermal ablation, surgical debulking and stent insertion were all favoured options where immediate relief of endobronchial obstruction is required, especially if there is a relatively large cancer. Endobronchial debulking procedures are generally not suitable in cases where the predominant cause of airway obstruction is extrinsic compression. In such cases airway stenting to maintain/re-establish airway patency and/or external beam radiotherapy aimed at treating the surrounding cancer may be considered. External beam radiotherapy is effective in around two-thirds of patients and is less invasive than the other endobronchial treatments (NICE, 2011).

Recommendation 2.3.4.1	Grade
In lung cancer patients with symptomatic (including breathlessness, haemoptysis and cough) malignant airway obstruction, any of the following therapeutic interventions may be considered: bronchoscopic debulking, tumour ablation modalities, airway stent placement and radiotherapy (external beam or brachytherapy).	D

2.3.5 Staging algorithm for patients with suspected lung cancer

Figure 3. Staging algorithm in patients with suspected lung cancer. Modified from (Thomas and Gould, 2016).

For explanatory notes, see over page.

40 | Diagnosis, staging and treatment of patients with lung cancer

* Please note that this refers to the 7th edition of the IASLC TNM staging system.

\$ Definitions:

Peripheral lesions	Normal mediastinal and N1 nodes (<1cm) and a peripheral tumour (within outer two-thirds of hemithorax) (Silvestri et al., 2013).
Central lesions	Normal mediastinal nodes (<1cm) but enlarged N1 nodes (\ge 1cm) or a central tumour (with proximal one-third of the hemithorax) (Silvestri et al., 2013).
Bulky nodal disease	Correlates with the radiographic group A, as described in the American College of Chest Physicians (ACCP) evidence-based Clinical Practice Guidelines (Silvestri et al., 2013). This group is defined as mediastinal infiltration, where the discrete lymph nodes cannot be distinguished or measured.
Discrete nodal disease	Correlates to radiographic group B, as described in the American College of Chest Physicians (ACCP) evidence-based Clinical Practice Guideline (Silvestri et al., 2013). This group is defined as patients with mediastinal node enlargement, in whom the size of the discrete nodes can be measured.

Δ Mediastinoscopy/video assisted mediastinoscopy/extended cervical mediastinoscopy/oesophageal ultrasound

| Diagnosis, staging and treatment of patients with lung cancer

2.4 Pathology

Responsibility for the implementation of pathology recommendations

While the CEO, General Manager and the Clinical Director of the hospital have corporate responsibility for the implementation of the recommendations in this National Clinical Guideline, each member of the multidisciplinary team is responsible for the implementation of the individual guideline recommendations relevant to their discipline.

The literature used in the development of this guideline was based on the 7th edition of the Lung Cancer TNM staging system. The 8th edition of the TNM staging system was published in December 2016 (Brierley et al., 2016), this may lead to changes in recommendations over time, which should be taken into consideration at multidisciplinary team meetings.

Pathology Terminology & Reporting

Guidance on the appropriate terminology for use in Biopsy/Cytological/Resections specimen reports is covered by the RCPath reporting proforma template (RCPath, 2016) and further detailed in the WHO Classification of Tumours of the Heart, Lung, Pleura Thymus and Heart (4th Edition, 2015).

Lung resection specimens

When reporting lung resection specimens use the information/terminology of the current RCPath template (Appendix - Histopathology reporting proforma for lung cancer resection specimens).

Lung biopsy/cytology specimens

When reporting lung biopsy/cytology specimens use the information/terminology of the current RCPath template (Appendix - Reporting proforma for lung cancer biopsy/cytology specimens.)

Good practice point

A comment should be included if there is insufficient tissue for molecular analysis in non-squamous non-small cell lung cancer (NSCLC).

Good practice point

The term bronchioloalveolar carcinoma (BAC) should be discontinued.

- a) What is the benefit of histopathological analysis for small-cell lung cancer (SCLC) vs non-small cell lung cancer (NSCLC)?
- b) When should immunohistochemical analysis be performed?
- c) What is the best panel(s) of immunohistochemical stains for NSCLC subtypes?

Evidence summary

Clinical guidelines (Travis et al., 2011, SIGN, 2014) a diagnostic study (Bishop et al., 2010) and a review (Travis, 2002) addressed this clinical question.

a) Benefit of histopathological analysis for SCLC and NSCLC

Lung cancer can be divided into many subtypes, the most important distinction is between SCLC and NSCLC, this is important because of the major clinical differences in presentation, metastatic spread and response to therapy. Another important feature of the pathology of lung cancer is histologic heterogeneity, which consists of a mixture of histologic types that represents the derivation of lung cancer from a pluripotent stem cell. (Travis, 2002)

b) Purpose of immunohistochemical analysis

Immunohistochemistry should be used in all NSCLC cases which cannot be sub-typed on morphological grounds. (SIGN, 2014)

In cases where a specimen shows NSCLC lacking either definite squamous or adenocarcinoma morphology, immunohistochemistry may refine diagnosis (Travis et al., 2011).

Immunohistochemistry has been routinely used for separating metastatic tumours from primary lung cancers especially in patients with no known primary tumours, it is also becoming more important in the classification of primary lung tumours. Indeed, recent advances in targeted therapies (e.g. tyrosine kinase inhibitors and angiogenesis inhibitors) have made the distinction between adenocarcinomas and squamous cell carcinomas of the lung even more important (Besse et al., 2007, Cohen et al., 2007, Herbst, 2006, Herbst and Sandler, 2008, Johnson et al., 2004, Lam and Watkins, 2007) because not only are tyrosine kinase inhibitors more efficacious in adenocarcinomas than in squamous cell carcinomas, but also the use of antiangiogenic modalities can be associated with life-threatening pulmonary haemorrhage in squamous cell carcinomas (Besse et al., 2007, Herbst, 2006). (Bishop et al., 2010)

c) Immunohistochemical panel(s)

At the present time, thyroid transcription factor-1 (TTF-1) seems to be the single best marker for adenocarcinoma. TTF-1 provides the added value of serving as a pneumocyte marker that can help confirm a primary lung origin in 75 to 85% of lung adenocarcinomas (Motoi et al., 2008, Yatabe et al., 2002, Lau et al., 2002). This can be very helpful in addressing the question of metastatic adenocarcinoma from other sites such as the colon or breast. Diastase-periodic acid Schiff or mucicarmine mucin stains may also be of value. p63 is consistently reported as a reliable marker for squamous histology and CK5/6 also can be useful (Loo et al., 2010, Nicholson et al., 2010, Camilo et al., 2006, Wu et al., 2003, Chu and Weiss, 2002, Ordonez, 2000, Kaufmann and Dietel, 2000, Kargi et al., 2007, Khayyata et al., 2009). (Travis et al., 2011)

Napsin A appears to be a useful marker when used in combination with TTF-1 as it provides increased sensitivity and specificity for both classifying primary lung tumours as adenocarcinoma and for identifying lung origin in the setting of a metastatic adenocarcinoma (Bishop et al., 2010).

It is possible that cocktails of nuclear and cytoplasmic markers (TTF-1/CK5/6 or p63/napsin-A) may allow for use of fewer immunohistochemical studies of multiple antibodies (Rossi et al., 2009a). (Travis et al., 2011)

Strategic use of small biopsy and cytology samples is important, i.e., use the minimum specimen necessary for an accurate diagnosis, to preserve as much tissue as possible for potential molecular studies (Suh et al., 2011). Methods that use substantial amounts of tissue to make a diagnosis of adenocarcinoma versus squamous cell carcinoma, such as large panels of immunohistochemical stains or molecular studies, may not provide an advantage over routine light microscopy with a limited immunohistochemical workup (Rossi et al., 2009b). (Travis et al., 2011)

Immunohistochemical stains to distinguish between primary lung adenocarcinoma and squamous cell carcinoma are p63, p40, CK 5/6 (present in squamous cell carcinoma) and TTF-1, Napsin A (present in adenocarcinoma).

Every effort should be made, during the diagnostic phase, to preserve tumour material for molecular biomarker analysis. (SIGN, 2014)

Recommendation 2.4.1.1	Grade
Distinguishing between small-cell carcinoma and non-small cell carcinoma of the lung is recommended. For challenging cases, a diagnostic panel of immunohistochemical assays is recommended to increase the diagnostic accuracy.	В

Recommendation 2.4.1.2	Grade
In individuals with pathologically diagnosed non-small cell cancer (NSCLC), additional discrimination between adenocarcinoma and squamous cell carcinoma, even on cytologic material or small tissue samples is recommended.	В

Good practice point

Recommended immunohistochemical stains to distinguish between NSCLC/SCLC/Lymphoma include: Keratin, CD56, TTF – 1, CD45, Ki – 67 and synaptophysin.

Good practice point

Use of neuron specific enolase (NSE) is **not** recommended.

Good practice point

Recommended immunohistochemical stains to distinguish between primary lung adenocarcinoma and squamous cell carcinoma are p63, p40, CK 5/6 (present in squamous cell carcinoma) and TTF-1, Napsin A (present in adenocarcinoma).

Good practice point

Judicious use of tissue is extremely important and non- discriminatory immunostains and levels should be avoided.

What is the efficacy of the following diagnostic tools in identifying and staging lung cancer?

- ROSE at EBUS
- Frozen section

Evidence summary

A clinical guideline (Travis et al., 2011), two randomised controlled trials (Oki et al., 2013, Trisolini et al., 2011) and a diagnostic study (Marchevsky et al., 2004) addressed this clinical question.

ROSE at EBUS

A randomised controlled trial (RCT) was conducted in 2013 (Oki et al., 2013) to evaluate the efficacy of rapid on-site evaluation (ROSE) during endobronchial ultrasound guided-transbronchial needle aspiration (EBUS-TBNA) in the diagnosis of lung cancer. One hundred and twenty patients suspected of having lung cancer with hilar/mediastinal lymphadenopathy were randomised to undergo EBUS-TBNA with or without ROSE. The sensitivity and accuracy for diagnosing lung cancer were 88% and 89% in the ROSE group, and 86% and 89% in the non-ROSE group, respectively. No complications were associated with the procedures. Additional procedures including EBUS-TBNA for lesions other than the main target lesion and/or transbronchial biopsy in the same setting were performed in 11% of patients in the ROSE group and 57% in the non-ROSE group (p<0.001). Mean puncture number was significantly lower in the ROSE groups (22.2 vs. 3.1 punctures, p<0.001), and mean bronchoscopy time was similar between both groups (22.3 vs. 22.1 min, p=0.95). The authors concluded that ROSE during EBUS-TBNA is associated with a significantly lower need for additional bronchoscopic procedures and puncture number.

In addition an RCT of 168 patients with enlarged lymph nodes were randomised to undergo TBNA with or without ROSE (Trisolini et al., 2011). There was no significant difference between the TBNA group and the ROSE group in terms of diagnostic yield (75% vs 78%, respectively; p=0.64), and percentage of adequate specimens (87% vs 78%, respectively; p=0.11). However, similar to the findings reported by Oki et al. (2013), the complication rate of bronchoscopy was significantly lower in patients undergoing on-site review (6% vs 20%; p=0.01), whereas the complication rate of TBNA was similar among the study groups.

Frozen section

For a limited resection to be adequate oncologically, a precise pre- and intra-operative diagnosis is critical. The accuracy of intra-operative frozen section analysis in determining whether small lung adenocarcinomas have an invasive component still needs to be defined. The predictive value of frozen section ranges from 93% to 100% but not all articles clearly report the accuracy of frozen section analysis (Yamato et al., 2001, Yamada and Kohno, 2004, Yoshida et al., 2005, Watanabe et al., 2005). In addition, evaluation of margins by frozen section may be problematic, especially when stapler cartridges have been used on both sides. Scraping or washing of staple lines with subsequent cytological analysis has been attempted (Higashiyama et al., 2003, Utsumi et al., 2010). When a sublobar resection is performed, frozen section analysis of an interlobar, hilar, or any suspicious lymph node is a useful staging evaluation, and when positive nodes are found, a lobectomy is indicated when there is no functional cardiopulmonary limitation. (Travis et al., 2011)

Marchevsky et al., (2004) reviewed the frozen section diagnoses of 183 consecutive pulmonary nodules smaller than 1.5 cm in diameter and calculated the sensitivity, specificity, and predictive values of this diagnostic procedure. One hundred and seventy four nodules were correctly classified by frozen section as neoplastic or non-neoplastic, six lesions were diagnosed equivocally, and two neoplasms were missed owing to sampling errors. The sensitivities for a diagnosis of neoplasia were 86.9% and 94.1% for nodules smaller than 1.1 cm in diameter and measuring 1.1 to 1.5 cm, respectively. The diagnostic accuracy of frozen sections was significantly better in nodules larger than 1.0 cm in diameter (p=0.05). There were no false-positive diagnoses of malignancy, resulting in 100% specificity.

| Diagnosis, staging and treatment of patients with lung cancer

Intraoperative consultation with frozen section is a sensitive and specific procedure for the diagnosis of malignancy from small pulmonary nodules. The distinction between lepidic pattern adenocarcinoma and atypical adenomatous hyperplasia, and of small peripheral carcinoid tumours from other lesions, can be difficult by frozen section (Marchevsky et al., 2004).

Recommendation 2.4.2.1	Grade
Endobronchial ultrasound rapid on-site evaluation (EBUS ROSE) should be made available whenever resources permit.	В
Recommendation 2.4.2.2	Grade
Consider intra-operative frozen section analysis in primary diagnosis when preoperative diagnosis is not available.	С

Recommendation 2.4.2.3	Grade
In selected cases intra-operative frozen section analysis for staging may be considered.	С

In patients with NSCLC, how do cytological samples compare with tissue biopsy samples for tumour sub-typing, immunohistochemistry and predictive markers assessed by FISH or mutational analysis?

Evidence summary

Two clinical guidelines (Travis et al., 2011, Lindeman et al., 2013) addressed this clinical question.

Cytology is a powerful tool in the diagnosis of lung cancer, in particular in the distinction of adenocarcinoma from squamous cell carcinoma (Rivera et al., 2007). In a recent study of 192 preoperative cytology diagnoses, definitive versus favoured versus unclassified diagnoses were observed in 88% versus 8% versus 4% of cases, respectively (Rekhtman et al., 2011). When compared with subsequent resection specimens, the accuracy of cytologic diagnosis was 93% and for definitive diagnoses, it was 96%. For the adenocarcinoma and squamous cell carcinoma cases, only 3% of cases were unclassified, and the overall accuracy was 96%. When immunohistochemistry was used in 9% of these cases, the accuracy was 100% (Rekhtman et al., 2011).

Whenever possible, cytology should be used in conjunction with histology in small biopsies (Nicholson et al., 2010, Sigel et al., 2011). In another study where small biopsies were evaluated in conjunction with cytology for the diagnosis of adenocarcinoma versus squamous cell carcinoma versus unclassified non-small cell lung cancer-not otherwise specified (NSCLC-NOS), the result for cytology was 70% versus 19% versus 11% and for biopsies, it was 72%, 22%, and 6%, respectively (Sigel et al., 2011). Still when cytology was correlated with biopsy, the percentage of cases diagnosed as NSCLC-NOS was greatly reduced to only 4% of cases (Sigel et al., 2011). In a small percentage of cases (<5%), cytology was more informative than histology in classifying tumours as adenocarcinoma or squamous cell carcinoma (Sigel et al., 2011). The factors that contributed the greatest to difficulty in a specific diagnosis in both studies were poor differentiation, low specimen cellularity, and squamous histology (Rekhtman et al., 2011, Sigel et al., 2011). (Travis et al., 2011)

Small biopsies and/or cytologic samples including pleural fluids can be used for many molecular analyses (Rekhtman et al., 2011, Zhang et al., 2008, Wu et al., 2008, Li et al., 2008, Lim et al., 2009, Savic et al., 2008, Miller et al., 2008, Kimura et al., 2006, Borczuk et al., 2004, Zudaire et al., 2008, Gordon et al., 2003, Solomon et al., 2010, Asano et al., 2006, Otani et al., 2008). Epidermal growth factor receptor (EGFR) mutation testing and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation testing are readily performed on these specimens (Rekhtman et al., 2011, Sigel et al., 2011, Zhang et al., 2008, Li et al., 2008, Lim et al., 2009, Savic et al., 2008, Miller et al., 2011, Sigel et al., 2006, Solomon et al., 2010, Asano et al., 2008, Chani et al., 2008, Kimura et al., 2006, Solomon et al., 2010, Asano et al., 2008, Chani et al., 2008, Niller et al., 2008, Kimura et al., 2006, Solomon et al., 2010, Asano et al., 2006, Otani et al., 2008, Niller et al., 2008, Kimura et al., 2006, Solomon et al., 2010, Asano et al., 2006, Otani et al., 2008). Formalin fixed paraffin-embedded samples can be used effectively for polymerase chain reaction-based mutation testing and for fluorescence in situ hybridisation (FISH) or chromogenic in situ hybridisation (CISH) testing for gene amplification and for immunohistochemistry. Cytology smears can be analysed for immunohistochemical and certain molecular studies, but it is far preferable if cell blocks are available. (Travis et al., 2011)

Specimen requirements for anaplastic lymphoma kinase fluorescence in situ hybridisation (ALK FISH) are generally similar to those for EGFR mutation testing: formalin fixation is acceptable, specimens should have enough cancer cells to analyse clearly, and DNA-damaging fixatives or acidic decalcifying agents should be avoided, as should specimens with abundant necrosis. Unlike EGFR mutation testing, however, FISH testing can be problematic when performed on alcohol fixed samples. (Lindeman et al., 2013)

Recommendation 2.4.3.1	Grade
Cytology samples can be used to provide material suitable for both NSCLC sub-typing and	U
some molecular analysis, provided the samples are appropriately handled and processed.	J

Good practice point

When paired cytology and biopsy specimens exist, a review of both modalities is advised if there is discordance.

Good practice point

In general, immunohistochemistry work-up should not be duplicated on both samples.

Good practice point

ALK FISH can be problematic when performed on alcohol-fixed samples.

What are optimal formalin fixation times for future molecular diagnostics?

Evidence summary

A clinical guideline (Lindeman et al., 2013) addressed this clinical question.

Processing specimens for epidermal growth factor receptor (EGFR) mutation testing

The relatively broad time range of specimen fixation found in pathology practice usually has no effect on morphologic details, but longer durations of fixation adversely affect the quality of nucleic acid (Srinivasan et al., 2002). Fixation times of 6 to 12 hours for small biopsy samples and 8 to 18 hours for larger surgical specimens generally give best results, although expert consensus opinion is that fixation times of 6 to 48 hours should give acceptable results (Wolff et al., 2007, College of American Pathologists, 2012). This is a generalisation, however, and the effect of extreme fixation times should be assessed by each laboratory during validation. This knowledge should be incorporated into the interpretation and reporting of molecular pathology results when fixation times are extreme. (Lindeman et al., 2013)

Methods for anaplastic lymphoma kinase (ALK) testing

Specimen requirements for anaplastic lymphoma kinase fluorescence in situ hybridisation (ALK FISH) are generally similar to those for EGFR mutation testing: formalin fixation is acceptable, specimens should have enough cancer cells to analyse clearly, and DNA-damaging fixatives or acidic decalcifying agents should be avoided, as should specimens with abundant necrosis. (Lindeman et al., 2013)

Recommendation 2.4.4.1	Grade
Fixation times of 6 to 12 hours for small biopsy samples and 8 to 18 hours for larger surgical specimens generally give best results, although expert consensus opinion is that fixation times of 6 to 48 hours should give acceptable results.	

2.5 Surgery

Responsibility for the implementation of surgery recommendations

While the CEO, General Manager and the Clinical Director of the hospital have corporate responsibility for the implementation of the recommendations in this National Clinical Guideline, each member of the multidisciplinary team is responsible for the implementation of the individual guideline recommendations relevant to their discipline.

The literature used in the development of this guideline was based on the 7th edition of the Lung Cancer TNM staging system. The 8th edition of the TNM staging system was published in December 2016 (Brierley et al., 2016), this may lead to changes in recommendations over time, which should be taken into consideration at multidisciplinary team meetings.

In patients with stage I & II non-small cell lung cancer (NSCLC) how does the extent of lung resection effect outcomes?

Evidence summary

A clinical guideline (SIGN, 2014) and a prospective, multicentre, randomised trial (Ginsberg and Rubinstein, 1995) addressed this clinical question.

Lobectomy is an anatomical resection of the lung which includes resection of the lymphatic drainage, N1 and N2 nodes.

Sublobar resections include segmentectomy and wedge resections and may not deliver complete lymphatic drainage with N1 clearance. Segmentectomy and wedge resection procedures are not consistently defined in the literature making comparative review of outcomes difficult to interpret.

In 1995, the Lung Cancer Study Group reported on the only randomised trial of elective sublobar resection vs. lobectomy (Ginsberg and Rubinstein, 1995). This prospective, multicentre randomised trial compared limited resection with lobectomy for patients with peripheral T1 N0 non-small cell lung cancer documented at operation, 247 of 276 randomised patients were considered eligible for analysis. No significant differences were observed for all stratification variables, selected prognostic factors, perioperative morbidity, mortality, or late pulmonary function. In patients undergoing limited resection, there was an observed 75% increase in recurrence rates (p=0.02, one-sided) attributable to an observed tripling of the local recurrence rate (p=0.008 two-sided), an observed 30% increase in overall death rate (p=0.08, one-sided), and an observed 50% increase in death with cancer rate (p=0.09, one-sided) compared to patients undergoing lobectomy (p=0.10, one-sided was the predefined threshold for statistical significance for this equivalency study). The authors concluded that when compared with lobectomy, limited pulmonary function. Because of the higher death rate and locoregional recurrence rate associated with limited resection, lobectomy still must be considered the surgical procedure of choice for patients with peripheral T1 N0 non-small cell lung cancer.

Lobectomy is preferred to sub-lobar resection and segmentectomy is superior to non-anatomical wedge resection on the basis of a reduced recurrence rate (Ginsberg and Rubinstein, 1995), except in patients who are of marginal fitness (SIGN, 2014).

Lobectomy remains the procedure of choice for fit patients. (SIGN, 2014)

Recommendation 2.5.1.1	Grade
For patients with clinical stage I and II non-small cell lung cancer (NSCLC) who are medicall fit for surgical resection, a lobectomy rather than sublobar resection is recommended.	^y B

Good practice point

Offer more extensive surgery (bronchoangioplastic surgery, bilobectomy, pneumonectomy) if anatomically required to achieve clear margins.

In patients with clinical stage I NSCLC undergoing lobectomy, how does video-assisted thoracic surgery (VATS) compare to thoracotomy?

Evidence summary

A clinical guideline (SIGN, 2014) addressed this clinical question.

Video-assisted thoracoscopic surgery in patients with stage I NSCLC is associated with a lower incidence of complications, less disturbance to the immune response, and a shorter hospital stay compared to open thoracotomy (Ng et al., 2007, Paul et al., 2010, Whitson et al., 2008, Flores et al., 2009). Survival rates at two and five years are comparable (Whitson et al., 2008, Flores et al., 2009, Yang et al., 2009). Patients over the age of 70 also had fewer complications following VATS (28% v 45%, p=0.04), shorter hospital stay (five days, range 2–20 v six days, range 2–27, p<0.001) and comparable survival rates (Cattaneo et al., 2008). All evidence identified related to stage I disease rather than later stages. VATS is comparable to open surgery for systematic node dissection in terms of numbers of nodes dissected, operative mortality, morbidity and recurrence (Watanabe et al., 2005). (SIGN, 2014)

Recommendation 2.5.2.1	Grade
For patients with clinical stage I NSCLC, video-assisted thoracic surgery (thoracoscopy) should be considered as an alternative to thoracotomy for anatomic pulmonary resection.	В

Which pulmonary function tests should be used to determine fitness for resection?

Evidence summary

Two clinical guidelines (SIGN, 2014, Lim et al., 2010) addressed this clinical question.

Evaluation of lung function is an important aspect of preoperative assessment to estimate the risk of operative mortality and impact of lung resection on quality of life, especially in relation to unacceptable post-resection dyspnoea. (Lim et al., 2010)

FEV₁/D_{LCO}

Past studies have stated a cut-off of 40% for the post operative predictive (ppo) forced expiratory volume (FEV₁) and carbon monoxide transfer factor (T_{LCO}) for surgery. Many of these studies had small sample sizes (Lim et al., 2010). To increase resection rates it may be necessary to look at patients with ppo FEV₁ and T_{LCO} of less than 30%. It may also be important to consider patients with poor FEV₁s preoperatively, such as patients considered for lung reduction surgery (Lim et al., 2006). These patients would represent a select group and would need careful preoperative assessment which may involve perfusion scanning and pulmonary artery pressure measurement (Lim et al., 2010). (SIGN, 2014)

Patients who perform well at the six minute walk or shuttle test, but have ppo FEV_1 or T_{LCO} less than 30% have also been associated with good surgical outcomes. Surgery may be possible as a sub-lobar resection and VATS surgery may make surgery feasible in some patients (Ginsberg and Rubinstein, 1994). (SIGN, 2014)

Patients with lung cancer present as a very heterogeneous group and all management decisions, including suitability for surgery, should be tailored on the basis of a multidisciplinary team meeting. The thoracic surgeon is a key member of the multidisciplinary team. (SIGN, 2014)

VO, max

A meta-analysis has confirmed the finding that lower levels of VO_2 max are associated with increasing 'complications' after lung resection (Benzo et al., 2007). However, numerous values have been used to define 'prohibitive risk' for lung surgery, and the studies are difficult to interpret owing to the widespread use of composite endpoints. When scrutinised, individual endpoints included lobar collapse, high levels of carbon dioxide tension (PCO₂), arrhythmia and readmission to ICU. It is doubtful that many patients would consider the risk of developing these complications as 'prohibitive' for surgical resection. (Lim et al., 2010)

With sample sizes ranging from 8 to 160 patients (Benzo et al., 2007) and an average death rate of 2.6% for lobectomy, the discriminating cut-off points for VO_2 max to predict death is likely to be poor and, without valid risk adjustment, it is not possible to estimate an independent contribution of VO_2 max. The arbitrary use of cut-off values for defining patient groups with no adverse outcome carries a large degree of imprecision; for example, the 95% binomial CI of no adverse outcomes in a typical sample of 30 patients would be 0-13.6%. (Lim et al., 2010)

Perhaps the best conducted study was the Cancer and Leukemia Group B (CALBG) Protocol 9238 in which 403 patients were classified into low, high and very high risk groups. Of the 68 patients in the very high risk group (VO_2 max <15 ml/ kg/min), surgery was only undertaken at the 'physician's discretion' with an operative mortality rate of 4% and no difference in postoperative complication rate. A central message from this study was that, in patients in the very high risk subgroup who underwent lung resection, the median survival was 36 months compared with 15.8 months for those in the same risk group who did not undergo surgical resection (p<0.001) (Loewen et al., 2007). The evidence for cardiopulmonary exercise

Stair Test

A number of authors have reported on the association between stair climbing and surgical outcomes (Holden et al., 1992, Olsen et al., 1991, Von Nostrand et al., 1968, Girish et al., 2001, Brunelli et al., 2002). However, the data are difficult to interpret as there is a lack of standardisation of the height of the stairs, the ceiling heights, different parameters used in the assessment (e.g. oxygen saturations, extent of lung resection) and different outcomes. (Lim et al., 2010)

Shuttle Walk

The shuttle walk test is the distance measured by walking a 10 m distance usually between two cones at a pace that is progressively increased. This test has good reproducibility and correlates well with formal cardiopulmonary exercising testing (VO₂ max) (Singh et al., 1994, Morgan, 1989). Previous British Thoracic Society (BTS) recommendations that the inability to walk 25 shuttles classifies patients as high risk has not been reproduced by a prospective study (Win et al., 2004). Some authors report that shuttle walk distance may be useful to stratify low-risk groups (ability to walk >400 m) who would not need further formal cardiopulmonary exercise testing (Win et al., 2006). (Lim et al., 2010)

Recommendation 2.5.3.1	Grade
Pulmonary function testing (spirometry, diffusion capacity, lung volume) should be	C
performed in all patients being considered for surgical resection.	L

Recommendation 2.5.3.2	Grade
Postoperative predictive values should be calculated using broncho-pulmonary segment counting. If a mismatch is suspected ventilation perfusion scan should be performed.	с

Recommendation 2.5.3.3	Grade
Offer patients surgery if they have an $FEV_1 \& D_{LCO}$ within normal limits (postoperative	C
predicted values >60%).	L

Recommendation 2.5.3.4	Grade
Patients with ppo-FEV ₁ and/or D_{LCO} <30% should have formal cardiopulmonary exercise testing with measurement of VO ₂ max.	С

Recommendation 2.5.3.5	Grade
Patients with ppo-FEV ₁ and/or D_{LCO} >30% and <60% – supplementary functional exercise assessments should be considered.	D

Recommendation 2.5.3.6	Grade
In patients with lung cancer being considered for surgery and a VO ₂ max <15mL/kg/min predicted, it is recommended that they are counselled about minimally invasive surgery, sublobar resections or non-operative treatment options for their lung cancer.	С

In patients with lung cancer, how should non-pulmonary co-morbidity influence surgical selection?

Evidence summary

A clinical guideline (Lim et al., 2010) and a validation study (Falcoz et al., 2007) addressed this clinical question.

Patient demographics and risk-factors for lung cancer contribute to significant co-morbidities in our surgical candidate population. This has implications for surgical case selection and outcomes.

For patients who had undergone prior coronary bypass surgery, the risk of death and myocardial infarction was observed to be reduced from 5.8% and 1.9% to 2.4% and 1.2%, respectively (Eagle et al., 1997). (Lim et al., 2010)

The current evidence base that guides clinical management of the specific thoracic surgical patient with coronary artery disease is limited. (Lim et al., 2010)

Thoracoscore is a multifactorial risk assessment model to predict in-hospital mortality in various thoracic procedures. The model was first published by the French Society of Thoracic and Cardiovascular Surgery (Falcoz et al., 2007). Thoracoscore is recommended for use in the UK by the 'British Thoracic Society' and the 'National Institute for Health and Care Excellence' (NICE). However, a recent multicentre prospective study (Sharkey et al., 2015) aimed to evaluate Thoracoscore as a valid tool for use in patients undergoing lung resection at six UK centres. They found the mean thoracoscore was 2.66%, almost double the observed mortality of 1.38%. However, mean thoracoscore for the patients who died was statistically significantly higher than those who survived, 4.01% versus 2.64% (p<0.001).

A history (including assessment of functional status), physical examination and resting ECG are prerequisites for cardiac risk assessment. All patients with an audible murmur or unexplained dyspnoea should also have an echocardiogram. The first step in cardiac risk assessment is to identify patients with an active cardiac condition, as they all require evaluation by a cardiologist and correction before surgery. (Lim et al., 2010)

In patients who do not have an active cardiac condition, risk assessment is performed using the revised cardiac index.

Table 5, shows a validated model with receiver operator characteristic (ROC) area under the curve (AUC) of 0.81 (Lee et al. 1999). (Lim et al., 2010)

Number of Factors	Risk of Major Cardiac Complication*
0	0.4%
1	1%
2	7%
≥3	11%

Table 5. Revised cardiac risk index

Risk factors: high-risk type of surgery (includes all thoracic surgery), ischaemic heart disease, history of congestive cardiac failure, history of cerebrovascular disease, insulin therapy for diabetes, preoperative serum creatinine >177 mmol/l.

*Cardiac complications defined as myocardial infarction, pulmonary oedema, ventricular fibrillation or primary cardiac arrest, complete heart block. The risks have been quoted from the validation cohort.

| Diagnosis, staging and treatment of patients with lung cancer

Patients with ≤ 2 risk factors and good cardiac functional capacity (able to climb a flight of stairs without cardiac symptoms) can proceed to surgery without further investigations. Patients with poor cardiac functional capacity or with ≥ 3 risk factors should have further investigations to screen for reversible cardiac ischaemia (e.g. exercise stress testing, exercise thallium scan) and, if necessary, cardiology review prior to surgery. (Lim et al., 2010)

Recommendation 2.5.4.1	Grade
Lung cancer surgery remains the best opportunity for potential cure in patients with significant co-morbidity. Efforts to contain and manage that risk should start with preoperative scoring (thoracoscore) and should ideally include attendance at a preoperative assessment clinic, where practical.	D

Recommendation 2.5.4.2	Grade
Seek a cardiology review in patients with an active cardiac condition or \geq 3 risk factors or poor cardiac functional capacity.	С

Recommendation 2.5.4.3	Grade
Offer surgery without further investigations to patients with ≤2 risk factors and good	B
cardiac functional capacity.	D

Good practice point

All anatomically resectable patients should be seen by a surgeon before they are deemed surgically unfit.

Should lung cancer surgery be offered to octogenarians?

Evidence summary

A clinical guideline (British Thoracic Society, 2001) and a non-systematic review (Weinmann et al., 2003) addressed this clinical question.

Most studies in octogenarians (80 years and over) are small and involve patients presenting with stage I disease treated by lobectomy or more limited resection. Earlier studies suggested a high perioperative mortality rate (Shirakusa et al., 1989) but more recent reports suggest this has fallen, reflecting a similar fall in operative mortality seen previously in less elderly patients (Tanita et al., 1995; Pagni et al., 1997). (British Thoracic Society, 2001)

A non-systematic review of 37 studies of surgery in the elderly with NSCLC (Weinmann et al., 2003) concluded that careful preoperative assessment of a patient including vigorous techniques of improvement of their physical and mental status are a must for a successful treatment outcome in elderly patients with lung cancer.

Recommendation 2.5.5.1	Grade
Age >80 years should not automatically preclude surgery. Decisions should be based on	р
oncological stage, co-morbidity and physiological testing.	U

In patients with NSCLC what is the optimum surgical approach for?

- a) Multifocal tumours
- b) Synchronous tumours

Evidence summary

A clinical guideline (Kozower et al., 2013) addressed this clinical question.

Multifocal

The literature is limited in this area and pathological definitions have evolved recently.

The approach used here is to define such patients according to clinical features as opposed to pathologic features, which generally are not available until after treatment (i.e., resection) has been carried out. Multifocal lung cancers (MFLCs) are defined as multiple lesions arising from ground glass opacities (GGOs), which may have or develop a solid component. There may be a limited number or multiple lesions. The following patients are also included: those with a GGO lesion suspected or proven to be malignant and other small GGO lesions that are more likely adenomatous alveolar hyperplasia (AAH) than an invasive carcinoma because data suggest that AAH is a precursor to such tumours (Kakinuma et al., 2004, Nakata et al., 2004, Travis et al., 2005). Including such patients also satisfies the need for a clinically applicable definition. At the other end of the spectrum are patients with an infiltrative pattern of disease either confined to a particular area (segment or lobe) or appearing diffusely in the lung parenchyma (also called pneumonic type of adenocarcinoma). These conditions should also be included among multifocal cancers. (Kozower et al., 2013)

There is a growing body of data that demonstrates excellent survival after resection of small solitary GGO lesions (Howington et al., 2013). Furthermore, data support that sublobar resection of single lesions presenting as a GGO is adequate. Much fewer data have been published on the outcome of patients with multiple cancers presenting as GGO lesions (i.e., multifocal cancers). Good survival and a low recurrence rate after resection of MFLC have been reported (Kim et al., 2009, Park et al., 2009). (Kozower et al., 2013)

It is reasonable to suggest that limited resection of MFLCs should be performed. This is supported by the good outcomes of limited resection for single GGO lesions (Howington et al., 2013), the perception of a decreased propensity for nodal and systemic metastases, an increased propensity to develop new pulmonary foci of cancer, and the need to preserve lung parenchyma when patients present with multiple lesions. The good survival that is reported after resection argues for an aggressive, curative-intent approach rather than palliative treatment. (Kozower et al., 2013)

Often, patients with MFLC also have lesions not believed to be malignant (i.e. < 10 mm pure GGO lesions, which are AAH in the majority). We suggest that these patients be approached according to the data available for isolated lesions with the same characteristics (Pastorino et al., 2003). Lesions that are sufficiently suspicious of being malignant should prompt treatment, whereas those that are not should continue to be observed. (Kozower et al., 2013)

Synchronous

The term synchronous tumour refers to two separate primary lung cancers occurring at the same time. The distinction from metastatic disease may be clear when there are two separate histological subtypes. Where the same subtype is in both lesions, the criteria proposed by Martini and Melamed (1975) can be useful (Kozower et al., 2013).

The survival of patients with synchronous primary lung cancer is fairly variable, suggesting that a thoughtful approach is necessary in classifying two synchronous foci of cancer as two separate primary lung cancers. (Kozower et al., 2013)

Approximately 60% of synchronous primary lung cancer reported in the past 25 years are squamous cell cancers, and in about 60% of the cases, the tumours are of the same histologic type (Van Bodegom et al., 1989, Deschamps et al., 1990, Rosengart et al., 1991, Antakli et al., 1995, Ribet and Dambron, 1995, Lee et al., 2008, Ferguson et al., 1985). (Kozower et al., 2013)

The average 5-year survival of patients who undergo resection is only about 25%, and that of patients with pathological stage I disease is about 40%. Nevertheless, this appears to be better than the natural history of untreated lung cancer (Detterbeck and Gibson, 2008). In the absence of distant metastases, lymph node involvement, or evidence that the second focus of cancer is a metastasis, resection is preferable to observation according to the available data. (Kozower et al., 2013)

Recommendation 2.5.6.1	Grade
Multifocal	
In patients with suspected or proven multifocal lung cancer (without mediastinal or	р
extrapulmonary disease), curative-intent treatment may be considered, following	U
discussion at a multidisciplinary team meeting.	

Recommendation 2.5.6.2	Grade
Synchronous	
In patients with suspected or proven synchronous primary lung cancers (without	C
mediastinal or extrapulmonary disease), curative-intent treatment may be considered,	L
following discussion at a multidisciplinary team meeting.	

In patients with NSCLC, what is the optimal lymph node strategy at surgical resection?

Evidence summary

A clinical guideline (Lim et al., 2010) and a randomised controlled trial (Darling et al., 2011) addressed this clinical question.

The British Thoracic Society states that systematic mediastinal lymph node dissection is the removal of all present and accessible N1 and N2 lymph nodes. The Union for International Cancer Control (UICC) recommends that at least six lymph node stations should be removed or sampled before the confirmation of pN0 status (Goldstraw, 2009). Three of these nodes/stations should be mediastinal (including the subcarinal station) and three should be from N1 stations (Lim et al., 2010).

There is considerable variation in practice, from no lymph node sampling through lobe-specific sampling to systematic nodal dissection. Postoperative morbidity is usually cited against the use of routine systematic nodal dissection and, in response to this, the results of the American ACOSOG Z30 trial confirm that patients randomised to complete mediastinal lymphadenectomy had little added morbidity compared with those who underwent lymph node sampling (Allen et al., 2006). Two trials comparing systematic nodal dissection with lymph node sampling reported better survival in patients randomised to systematic nodal dissection (Izbicki et al., 1995, Wu et al., 2002). (Lim et al., 2010)

Mediastinal lymph node dissection (MLND) does not improve long-term survival in patients with earlystage (T1 or T2, N0 or nonhilar N1) NSCLC who have pathologically negative mediastinal and hilar nodes after rigorous systematic preresection lymph node sampling. In such patients, mediastinal lymph node dissection also does not affect the rate of local or regional recurrence. Darling et al. states that the results do not apply to patients with T3 or T4 tumours or those with known hilar or N2 disease because they were not included in the study. Staging by PET-CT or CT alone is not equivalent to the invasive staging performed in this study, and surgeons cannot use this study to justify excluding invasive mediastinal staging from their evaluation of patients with early-stage NSCLC. (Darling et al., 2011)

Mediastinal lymph node dissection provides patients with the most accurate staging and the opportunity for adjuvant therapy if occult metastatic disease is present. Because current preoperative staging cannot definitively identify patients with mediastinal lymph node involvement, and because patients with known hilar or mediastinal disease (N2) or with T3 or T4 tumours may benefit from mediastinal lymph node dissection because the pre-test probability of N2 disease is higher, we still recommend that all patients with resectable NSCLC undergo mediastinal lymph node dissection because the procedure does not increase mortality or morbidity. (Darling et al., 2011).

Recommendation 2.5.7.1	Grade
Systematic mediastinal lymph node dissection should be performed in all patients having a lung cancer resection.	В

In patients with malignant pleural effusion associated with lung cancer, what is the best treatment strategy?

Evidence summary

A clinical guideline (SIGN, 2014) and an UpToDate[®] review (Light and Doelken, 2015) addressed this clinical question.

In patients with malignant pleural effusion whose symptoms improve following fluid drainage, a number of options are available depending on performance status and documentation of lung re-expansion. (Light and Doelken, 2015)

The optimal technique for pleurodesis in malignant pleural effusion has been investigated in a Cochrane review (Shaw and Agarwal, 2004). The main agent used in the UK for pleurodesis is talc. Talc appears to be the most effective sclerosant, with a relative risk for successful pleurodesis of 1.26 (95% CI 1.07 to 1.48) compared with bleomycin or tetracycline. Adult respiratory distress syndrome following talc pleurodesis has been reported as a complication in case reports but not in RCTs. Meta-analysis indicates there is no evidence of excess mortality with talc pleurodesis compared with other sclerosants. Thoracoscopic pleurodesis was found to be more effective than medical thoracostomy pleurodesis, with a relative risk of non-recurrence of an effusion of 1.19 (95% CI 1.04 to 1.36) in favour of thoracoscopic pleurodesis. There was no evidence for increased mortality following thoracoscopic pleurodesis. (SIGN, 2014)

There is evidence to support the use of tunnelled pleural catheters in the management of malignant pleural effusions when talc pleurodesis is not possible (Sabur et al., 2013, Suzuki et al., 2011, Thornton et al., 2010, Tremblay and Michaud, 2006). They provide a safe means of palliation of symptoms secondary to the effusion and enable the patient to be managed at home rather than hospital (Sudharshan et al., 2011). The main complications appear to be blockage or dislodgement of the catheter or seeding down the drain tract. In a retrospective audit seeding affected 6.7% of 45 patients (Janes et al., 2007). Spontaneous pleurodesis occurred in up to 25% of cases. Very few cases of pleural infection secondary to the drain have been reported (Janes et al., 2007). Achieving complete lung re-expansion prior to pleurodesis remains the most important prerequisite for success. (SIGN, 2014)

Serial thoracentesis is commonly practiced.

Recommendation 2.5.8.1	Grade
In patients with malignant pleural effusion whose symptoms improved following drainage, a number of options are available depending on performance status and documentation of lung re-expansion:	
- In patients with good performance status with lung re-expansion, thoracoscopy with talc pleurodesis is recommended.	с
- In patients with non-expandable lung, tunnelled catheters may be considered.	С
- In patients with poor performance status with lung re-expansion, options include: tunnelled pleural catheter, serial thoracentesis, or bedside talc pleurodesis.	D

Should surgical resection be considered in patients with NSCLC, who have treatable isolated brain or adrenal metastases at the time of presentation?

Evidence summary

A best evidence topic (Modi et al., 2009) including eleven retrospective studies (1,035 patients) addressed the treatment of brain metastases, and a retrospective study (Raz et al., 2011) addressed the issue of treatment of adrenal metastases in this clinical question.

Brain metastasis

A best evidence topic (Modi et al., 2009) including eleven retrospective studies (Bonnette et al., 2001, Getman et al., 2004, Penel et al., 2001, Mussi et al., 1996, Iwasaki et al., 2004, Girard et al., 2006, Wronski et al., 1995, Mozami et al., 2002, Furak et al., 2005, Billing et al., 2001, Abrahams et al., 2001) addressed the issue of surgical resection of the primary tumour in patients with NSLC and cerebral metastases. In these studies, the median survival for the curative intent groups (bifocal therapy \pm adjuvant treatment) ranged from 19 to 27 months (mean=23.12 \pm 3.3 months) and at 1, 2 and 5 years from 56% to 69% (mean= 63.9 \pm 5.6%), 28% to 54% (mean= 38.7 \pm 11%) and 11% to 24% (mean=18 \pm 5.7%), respectively. In comparison, the median and 1-year survival of the palliative groups were 7.1–12.9 months (mean=10.3 \pm 2.9 months) and 33–39.7% (mean= 35.3 \pm 3.8%), respectively. The study concluded that in the absence of mediastinal lymph node involvement, surgical resection of NSCLC with complete resection of the brain metastasis improves prognosis.

Adrenal

Raz et al. (2011) identified 37 patients with isolated adrenal metastasis from NSCLC. Twenty patients underwent adrenalectomy. Patients did not undergo adrenalectomy owing to suspicion of N2 disease, medical comorbidities, or patient preference. Seven patients (35%) treated surgically had tumours that were ipsilateral to their primary tumour, and eight (40%) had metachronous metastases. Five-year overall survival was 34% for patients treated operatively and 0% for patients treated nonoperatively p=0.002). Among patients treated with adrenalectomy, patients with ipsilateral metastases had a 5-year survival of 83% compared with 0% for patients with contralateral metastases (p=0.003). Patients without mediastinal nodal disease had a 5-year survival of 52% compared with 0% for patients with mediastinal nodal disease (p=0.008). Survival of patients who underwent adrenalectomy for synchronous and metachronous adrenal metastases was not significantly different (p=0.81). Surgical resection of isolated adrenal metastasis from lung cancer provides a survival benefit in well-selected patients compared with nonoperative management. No patient with contralateral metastases or mediastinal nodal disease survived long term after adrenalectomy. The time interval between treatment of the primary lung cancer and adrenal metastasis was not significantly associated with survival, but the cohort size was small.

Recommendation 2.5.9.1	Grade
In patients with an isolated brain metastasis and a synchronous resectable primary NSCLC, sequential resection of the primary tumour and definitive treatment of the brain metastasis may be considered, following discussion at a multidisciplinary team meeting.	С

Recommendation 2.5.9.2	Grade
In patients with an isolated adrenal metastasis and a synchronous resectable primary NSCLC, sequential resection of the primary tumour and definitive treatment of the adrenal metastasis may be considered, following discussion at a multidisciplinary team meeting.	D

Good practice point

The management of these patients should be discussed at a multidisciplinary team meeting including the role of systemic therapy.

Should surgical resection be considered as part of the multimodality treatment of patients with stage IIIa (N2) NSCLC?

Evidence summary

Two clinical guidelines (Lim et al., 2010, SIGN, 2014) addressed this clinical question.

N2 disease describes any metastatic involvement of ipsilateral or subcarinal mediastinal nodes. This term encompasses a spectrum of disease from micrometastatic disease in one node to extranodal extension from malignant disease in several lymph node stations and therefore the management of N2 disease should take this into consideration. (Lim et al., 2010)

The IASLC Lung Cancer Staging Project identified that overall disease burden (in the lymph nodes) had more influence on prognosis than anatomical site of lymph node involvement (Rusch et al., 2007); hence nodal stations are now consolidated into lymph node zones (Rusch et al., 2009). The prognosis of single zone N2 disease (N2a) was better than multi-zone N2 (N2b) disease with post-resection 5-year survivals of 34% and 20%, respectively (p<0.001) (Rusch et al., 2007). (Lim et al., 2010)

Single zone N2 disease

Resection may be considered in patients with single zone N2 disease as survival is similar to patients with multi-zone N1b disease (Rusch et al., 2007). (Lim et al., 2010)

Multi-zone disease

Patients with bulky or fixed N2 disease are not considered for surgery and are treated by combinations of chemotherapy, radical radiotherapy or concurrent chemoradiotherapy. (Lim et al., 2010)

A number of retrospective case series with relatively small numbers (30–100 cases) have been published detailing the clinical outcomes achieved following surgery in selected patients with stage IIIa disease (Detterbeck, 2001). Patients were managed using a multimodality approach that included preoperative chemotherapy and occasionally radiotherapy. Most studies suggested a survival benefit with a chemotherapy plus surgical resection protocol, compared with contemporary non-surgical management. (SIGN, 2014)

Patients who are suitable for surgery should have non-fixed, non-bulky disease and should be expected to tolerate multimodality treatment (Lim et al., 2010).

Recommendation 2.5.10.1	Grade
Consider surgery as part of multimodality management in patients with T1-3 N2 (non-	ſ
fixed, non-bulky, single zone) MO disease.	C

In patients with small-cell lung cancer (SCLC) what is the role of surgery?

Evidence summary

A clinical guideline (SIGN, 2014) addressed this clinical question.

In general, routine surgery for limited-stage SCLC is not recommended. An RCT examining the role of surgery in patients who had responded to five cycles of cyclophosphamide, doxorubicin and vincristine (CAV) systemic therapy failed to show any benefit for the surgical arm (Lad et al., 1994). (SIGN, 2014)

No RCTs were identified comparing adjuvant surgery to systemic anticancer therapy and radiotherapy alone. Retrospective trials indicate a combination of primary surgery and adjuvant systemic anticancer therapy and thoracic and cranial irradiation improves survival (Lim et al., 2008, Vallières et al., 2009, Weksler et al., 2012), but further research is required before strong conclusions can be drawn. (SIGN, 2014)

There are two specific situations in which surgery may be beneficial:

- 1. Patients with clinical stage T1-2 NO SCLC should be evaluated for potential surgical resection. On confirmation of localised disease, surgery should be considered. Case series examining systemic anticancer therapy following resection of early stage SCLC suggest that adjuvant systemic anticancer therapy may confer a survival advantage (Fujimori et al., 1997, Shepherd et al., 1989, Davis et al., 1993, Schreiber et al., 2010).
- 2. Occasionally a peripheral mass with no preoperative histology is found to be SCLC following resection. This tends to occur in patients at an early stage of the disease, who have operable cancer according to the standard criteria for NSCLC. Adjuvant systemic anticancer therapy may confer a survival advantage (Fujimori et al., 1997, Shepherd et al., 1989, Davis et al., 1993). (SIGN, 2014)

Recommendation 2.5.11.1	Grade
Patients with clinical stage I small-cell lung cancer (SCLC) and excellent performance status may be considered for resection following extensive staging investigation as part of a multimodality treatment regimen.	

64 | Diagnosis, staging and treatment of patients with lung cancer

2.6 Medical Oncology

Responsibility for the implementation of medical oncology recommendations

While the CEO, General Manager and the Clinical Director of the hospital have corporate responsibility for the implementation of the recommendations in this National Clinical Guideline, each member of the multidisciplinary team is responsible for the implementation of the individual guideline recommendations relevant to their discipline.

The literature used in the development of this guideline was based on the 7th edition of the Lung Cancer TNM staging system. The 8th edition of the TNM staging system was published in December 2016 (Brierley et al., 2016), this may lead to changes in recommendations over time, which should be taken into consideration at multidisciplinary team meetings.

In patients with non-small cell lung cancer (NSCLC) (excluding pancoast tumours) having curative surgery, how effective is preoperative (neoadjuvant) chemotherapy or chemoradiotherapy?

Evidence summary

A clinical guideline (Bezjak et al., 2015) and a meta-analysis (NSCLC Meta-analysis Collaborative Group, 2014) addressed this clinical question.

Preoperative chemotherapy

A recent meta-analysis (NSCLC Meta-analysis Collaborative Group, 2014) of individual participant data from 15 randomised control trials (2,385 patients) aimed to establish the effect of preoperative chemotherapy for patients with resectable NSCLC. The study showed a significant benefit of preoperative chemotherapy on survival (hazard ratio (HR) 0.87, 95% CI 0.78–0.96, p=0.007), a 13% reduction in the relative risk of death (no evidence of a difference between trials; p=0.18, I²=25%). This finding represents an absolute survival improvement of 5% at 5 years, from 40% to 45%. Recurrence-free survival (HR 0.85, 95% CI 0.76–0.94, p=0.002) and time to distant recurrence (0.69, 0.58–0.82, p<0.0001) results were both significantly in favour of preoperative chemotherapy although most patients included were stage Ib–IIIa. Findings, which are based on 92% of all patients who were randomised, and mainly stage Ib–IIIa, show preoperative chemotherapy significantly improves overall survival, time to distant recurrence, and recurrence free survival in resectable NSCLC. The findings suggest this is a valid treatment option.

Preoperative chemoradiotherapy

The American Society for Radiation Oncology guideline states that there is no level I evidence recommending the use of induction radiotherapy (or chemoradiotherapy) followed by surgery for patients with resectable stage III NSCLC. (Bezjak et al., 2015)

Recommendation 2.6.1.1	Grade
Preoperative chemoradiotherapy For patients with non-small cell lung cancer (NSCLC) who are suitable for surgery, do not offer neoadjuvant chemoradiotherapy outside a clinical trial.	В

Recommendation 2.6.1.2	Grade
Preoperative chemotherapy	
Following discussion at a multidisciplinary team meeting, appropriate patients with NSCLC	Α
who are suitable for surgery can be considered for neoadjuvant chemotherapy.	

Good practice point

This evidence does not apply to pancoast tumours.

In patients with locally advanced NSCLC having radical radiotherapy, is concurrent chemoradiotherapy more effective than sequential chemoradiotherapy?

Evidence summary

A clinical guideline (SIGN, 2014) addressed this clinical question.

In patients with locally advanced NSCLC, concurrent systemic anti cancer therapy confers a significant survival benefit over sequential treatment (HR 0.84, 95% CI, 0.74 to 0.95; p=0.004; absolute survival benefit 4.5% at five years) or radiotherapy alone (Aupérin et al., 2010, O'Rourke et al., 2010). This benefit is seen at a cost of increased radiotherapy toxicity to the oesophagus. The optimal chemotherapy and radiotherapy schedule remain unclear (O'Rourke et al., 2010). (SIGN, 2014)

Recommendation 2.6.2.1	Grade
Concurrent chemoradiotherapy should be administered to patients with locally advanced	^
NSCLC (suitable for radical radiotherapy) who have a good performance status (0-1).	A

Good practice point

A sequential approach may be chosen for patients considered at higher risk for toxicity or in patients with good performance status for other clinical reasons such as: the reduction in the radiotherapy field obtained if radiation is preceded by chemotherapy.

In patients with locally advanced NSCLC having concurrent radical chemoradiotherapy, what is the effectiveness of:

- a) Induction (first-line) chemotherapy
- b) Consolidation chemotherapy

Evidence summary

A clinical guideline (NICE, 2011) and a randomised controlled trial (Ahn et al., 2015) addressed this clinical question.

The NICE (2011) guideline discusses three studies examining the effectiveness of the following interventions:

Study	Intervention	
Vokes et al., 2007	Concurrent chemoradiation ± induction chemotherapy	
Hanna et al., 2008	Concurrent chemoradiation ± consolidation chemotherapy	
Kelly et al., 2008Concurrent chemoradiation + consolidation chemotherapy ± maintenance chemotherapy		

In an RCT of moderate quality Vokes et al. (2007) found no effect of induction chemotherapy on survival, disease-free survival or toxicity other than higher rates of grade 4 maximum toxicity and grade 3-4 absolute neutrophil count (ANC) in the patients who received induction treatment. Apart from higher rates of grade 3-5 infections and pneumonitis in the patients who received consolidation chemotherapy, Hanna et al. (2008) did not find any effect of consolidation chemotherapy on survival, progression-free survival or treatment-related deaths in an RCT of low-moderate quality. Kelly et al. (2008) in a low-moderate quality RCT found that although progression-free survival did not differ between the treatment groups, maintenance gefitinib was associated with significantly shorter survival than placebo. (NICE, 2011)

A recent randomised phase III trial aimed to determine the efficacy of consolidation chemotherapy with docetaxel and cisplatin (DP) after concurrent chemoradiotherapy with the same agents in locally advanced non-small cell lung cancer (Ahn et al., 2015). Patients were randomised to an observation arm (n=211) or a consolidation arm (n=209). In the observation arm patients received concurrent chemoradiotherapy with docetaxel (20 mg/m²) and cisplatin (20 mg/m²) every week for 6 weeks with a total dose of 66 Gy of thoracic radiotherapy in 33 fractions. In the consolidation arm patients received the same concurrent chemoradiotherapy followed by three cycles of DP (35 mg/m² each on days 1 and 8, every 3 weeks). In the consolidation arm, 143 patients (68%) received consolidation chemotherapy, of whom 88 (62%) completed three planned cycles. The median PFS was 8.1 months in the observation arm and 9.1 months in the consolidation arm (HR 0.91; 95% CI, 0.73 to 1.12; p=0.36). Median overall survival times were 20.6 and 21.8 months in the observation and consolidation arms, respectively (HR 0.91, 95% CI, 0.72 to 1.25; p=0.44). The study concluded that consolidation chemotherapy after concurrent chemoradiotherapy with weekly DP in locally advanced non-small cell lung cancer failed to further prolong PFS and concurrent chemoradiotherapy alone should remain the standard of care.

Recommendation 2.6.3.1	Grade
Induction or consolidation chemotherapy are not routinely recommended for patients receiving concurrent radical chemoradiotherapy.	В

Ensure patients are offered participation in a clinical trial when available and appropriate.

In patients with advanced/stage IV NSCLC what is the effectiveness of first-line chemotherapy and is there any evidence that particular regimens or drugs are more effective or less toxic than others?

Evidence summary

A Cochrane review (NSCLC Collaborative Group, 2010) and two randomised studies (Delbaldo et al., 2007, Scagliotti et al., 2008,) addressed the effectiveness of chemotherapy in patients with advanced NSCLC.

Effectiveness of first-line cytotoxic chemotherapy

A Cochrane review (NSCLC Collaborative Group, 2010) assessed the effect on survival of supportive care and chemotherapy versus supportive care alone in advanced NSCLC. Survival analyses, based on 2,533 deaths and 2,714 patients from 16 trials show a highly statistically significant benefit of chemotherapy on survival (HR 0.77; 95% CI 0.71 to 0.83, p<0.0001) translating to an absolute improvement of 9% at 12 months, increasing survival from 20% to 29% or an absolute increase in median survival of 1.5 months (from 4.5 months to 6 months). There was some evidence of heterogeneity between the trials (p=0.02, $I^2 = 47\%$).

A meta-analysis of randomised controlled trials evaluated the clinical benefit of adding a drug to single agent or 2-agent chemotherapy regimen in patients with advanced NSCLC (Delbaldo et al., 2007). In total, 57 trials (11,160 patients) were analysed. In the trials comparing a doublet regimen with a single-agent regimen, a significant increase was observed in tumour response (OR, 0.42; 95% confidence interval [CI], 0.37-0.47; p<0.001) and 1-year survival (OR, 0.80; 95% CI, 0.70-0.91; p<0.001) in favour of the doublet regimen. The median survival ratio was 0.83 (95% CI, 0.79-0.89; p<0.001). An increase was also observed in the tumour response rate (OR, 0.66; 95% CI, 0.58- 0.75; p<0.001) in favour of the triplet regimen, but not for 1-year survival (OR, 1.01; 95% CI, 0.85-1.21; p=0.88). The median survival ratio was 1.00 (95% CI, 0.94-1.06; p=0.97). The study concluded that in patients with advanced NSCLC a second drug improved tumour response and survival rate and that adding a third drug had a weaker effect on tumour response and no effect on survival.

A non inferiority, phase III, randomised study (Scagliotti et al., 2008) compared the overall survival of cisplatin/pemetrexed with cisplatin/gemcitabine in chemotherapy-naive patients with advanced NSCLC. Overall survival for patients randomly assigned to cisplatin/pemetrexed was noninferior to the overall survival of patients assigned to cisplatin/gemcitabine (median overall survival, 10.3 vs. 10.3 months; HR 0.94, 95% CI, 0.84 to 1.05). However, in patients with adenocarcinoma randomly assigned to cisplatin/pemetrexed, survival was significantly better than for those assigned to cisplatin/gemcitabine (12.6 v 10.9 months, respectively; p=0.03). This is supported by a recent meta-analysis (Pilkington et al., 2015) that combined the results from Scalgliotti et al. (2009) and Gronberg et al. (2009) and found that in patients with non-squamous disease, there is evidence that pemetrexed+platinum increases OS compared with gemcitabine+platinum (MA: HR 0.85, 95% CI 0.73 to 1.00; MTC-1: HR 0.85, 95% CI 0.74 to 0.98).

A number of phase II/III trials (Johnson et al., 2004, Sandler et al., 2006, Reck et al., 2009, Herbst et al., 2007, Niho et al., 2012) looked at the addition of bevacizumab in combination with chemotherapy. Additionally, four meta-analyses (Soria et al., 2013, Botrel et al., 2011, Cao et al., 2012, Lima et al., 2011) have addressed this issue, they broadly agree that the addition of bevacizumab to chemotherapy in patients with advanced NSCLC improves OS, PFS and RR. However, the absolute benefits are small and the adverse effects of treatment are considerable.

Effectiveness of first-line targeted therapy

A Cochrane review (Greenhalgh et al., 2016) and a phase III trial (Solomon et al., 2014) addressed the effectiveness of first-line targeted therapy in patients with advanced NSCLC.

The Guideline Development Group highlighted this as a rapidly evolving area of research.

EGFR

A recent Cochrane review (Greenhalgh et al., 2016) assessed the clinical effectiveness of EGFR TKI therapies in the first-line treatment of patients with EGFR mutation positive (M+) NSCLC compared with cytotoxic chemotherapy (used alone or in combination) and best supportive care. The study found that erlotinib, gefitinib, and afatinib are all active agents in EGFR M+ NSCLC patients, and demonstrate an increased tumour response rate and prolonged progression-free survival compared to cytotoxic chemotherapy.

Intervention		Control	Relative effect (95% CI)	
			Overall Survival	PFS
Erlotinib	VS.	Cytotoxic chemotherapy	HR 0.95 (0.75 to 1.22)	HR 0.30 (0.24 to 0.38)
Gefitinib	VS.	Paclitaxel + carboplatin	HR 0.95 (0.77 to 1.18)	HR 0.39 (0.32 to 0.48)
Afatinib	VS.	Cytotoxic chemotherapy	HR 0.93 (0.74 to 1.17)	HR 0.42 (0.34 to 0.53)

Adapted from (Greenhalgh et al., 2016)

Greenhalgh et al. (2016) concluded that erlotinib, gefitinib, and afatinib are effective in prolongation of PFS but not OS in EGFR M+ NSCLC patients with acceptable toxicity. Quality of life and response are closely linked, and the available data would favour selection of TKIs over chemotherapy as first-line treatment based on both these criteria. The review included six trials that measured quality of life for participants with EGFR M+ tumours by a number of different methods (two comparing afatinib with cytotoxic chemotherapy, two comparing erlotinib with cytotoxic chemotherapy, and two comparing gefitinib with cytotoxic chemotherapy); all six trials reported a beneficial effect of the TKI compared to cytotoxic chemotherapy. All three TKIs showed symptom palliation of cough, pain, and dyspnoea, although the methodology used was not standardised.

The majority of trials included people with a performance status (PS) of 1 and 2, but the data on AEs suggest that some PS 3 as well as elderly patients might tolerate the agents better than cytotoxic chemotherapy (Chen et al., 2012, Reck et al., 2010).

ALK

Solomon et al. (2014) conducted an open-label, phase III trial comparing crizotinib treatment with pemetrexed-plus-platinum chemotherapy in patients with previously untreated advanced ALK-positive NSCLC. Progression-free survival was significantly longer with crizotinib than with chemotherapy (median, 10.9 months vs. 7.0 months; hazard ratio for progression or death with crizotinib, 0.45; 95% confidence interval [CI], 0.35 to 0.60; p<0.001). Objective response rates were 74% and 45%, respectively (p<0.001). Median overall survival was not reached in either group (hazard ratio for death with crizotinib, 0.82; 95% CI, 0.54 to 1.26; p=0.36); the probability of 1-year survival was 84% with crizotinib and 79% with chemotherapy. The most common adverse events of any cause for which the incidence was at least 5 percentage points higher in the crizotinib group than in the chemotherapy group were vision disorder (occurring in 71% of the patients), diarrhoea, (in 61%), and odema (in 49%); and the events for which the incidence was at least 5 percentage points higher in 38% of the patients), anaemia (in 32%), and neutropenia (in 30%). There was a significantly greater overall improvement from baseline in global quality of life among patients who received crizotinib than among those who received chemotherapy (p<0.001). The study concluded that

crizotinib was superior to standard first-line pemetrexed-plus-platinum chemotherapy in patients with previously untreated advanced ALK-positive NSCLC.

Recommendation 2.6.4.1	Grade
Effectiveness of first-line cytotoxic chemotherapy	
In patients with a good performance status (PS) (i.e. Eastern Cooperative Oncology Group	
[ECOG] level 0 or 1) and stage IV NSCLC, a platinum-based chemotherapy regimen is	Α
recommended based on the survival advantage and improvement in quality of life (QOL)	
over best supportive care (BSC).	

Recommendation 2.6.4.2	Grade
Effectiveness of first-line cytotoxic chemotherapy	
In patients with stage IV NSCLC and a good performance status, two-drug combination	А
chemotherapy is recommended. The addition of a third cytotoxic chemotherapeutic agent	A
is not recommended because it provides no survival benefit and may be harmful.	

Recommendation 2.6.4.3	Grade
Effectiveness of first-line cytotoxic chemotherapy	
In patients receiving palliative chemotherapy for stage IV NSCLC, it is recommended that	В
the choice of chemotherapy is guided by histological type of NSCLC.	

Recommendation 2.6.4.4	Grade
Effectiveness of first-line cytotoxic chemotherapy	
Bevacizumab plus platinum-based chemotherapy may be considered an option in carefully selected patients with advanced NSCLC. Risks and benefits should be discussed with	В
patients before decision making.	

Recommendation 2.6.4.5	Grade
Effectiveness of first-line targeted therapy	
First-line single agent EGFR tyrosine kinase inhibitors (TKI) should be offered to patients	А
with sensitising EGFR mutation positive NSCLC. Adding combination chemotherapy to TKI	A
confers no benefit and should not be used.	

Recommendation 2.6.4.6	Grade	Resource implication:
Effectiveness of first-line targeted therapy Crizotinib should be considered as first-line therapy in patients with ALK positive NSCLC tumours.		Crizotinib is licensed for this indication in the Republic of Ireland but is not currently reimbursed. The HSE reimbursement application is expected to be submitted in 2017.

Good practice point

Ensure patients are offered participation in a clinical trial when available and appropriate.

Good practice point

Patients should be referred for assessment by the palliative care service.
In patients with advanced/stage IV NSCLC is there any evidence for maintenance systemic therapy?

Evidence summary

Two clinical guidelines (SIGN, 2014, and Kulkarni et al., 2015- Cancer Care Ontario) addressed this clinical question.

The Cancer Care Ontario Guideline Development Group (Kulkarni et al., 2015) conducted a meta-analysis of three RCTs (Ciuleanu et al., 2009, Paz-Ares et al., 2012, Rittmeyer et al., 2013). They found that patients randomised to pemetrexed as maintenance therapy had longer overall survival compared with those who did not receive maintenance pemetrexed therapy (HR 0.78; 95% confidence interval [CI], 0.69 to 0.89; p=0.0003, I²=0%). At a baseline risk of 51% at 12 months, there would be 8% (83 per 1000) fewer deaths at 12 months (95% CI from 40 fewer to 121 fewer) for patients who received pemetrexed maintenance therapy.

The three RCTs reported on quality of life and found either no difference in the majority of scores or significant delays in symptom deterioration in favour of patients who received pemetrexed maintenance treatment (Ciuleanu et al., 2009, Paz-Ares et al., 2012, Rittmeyer et al., 2013). (Kulkarni et al., 2015)

A significant interaction was observed between histology (squamous versus non-squamous carcinoma) and treatment for progression-free survival and overall survival in Ciuleanu 2009. The two other RCTs included only patients with non-squamous histology (Barlesi et al., 2013, Paz-Ares et al., 2013). Meta-analysis with these two RCTs, plus the data from patients with non-squamous carcinoma from Ciuleanu 2009, found that patients with non-squamous cell histology who received pemetrexed as maintenance therapy had longer OS (HR 0.74; 95% CI, 0.64 to 0.86; p<0.0001) and PFS (HR 0.51; 95% CI, 0.41 to 0.63; p<0.00001) compared with those who did not receive pemetrexed as maintenance therapy. (Kulkarni et al., 2015)

Erlotinib maintenance treatment provided a statistically significant increase in progression-free survival and overall survival in patients treated with standard first-line platinum-based chemotherapy, both in the whole study population and in a post hoc analysis in patients with stable disease. In the whole study population the changes in these outcomes were considered to be of modest size. Median PFS was statistically significantly longer in the erlotinib group compared with placebo group, 12.3 weeks versus 11.1 weeks, (HR 0.71, 95% CI 0.62 to 0.82), with a similar HR in patients with EGFR IHC-positive tumours, representing around 70% of the patient population, (0.69, 95% CI 0.58 to 0.82) (Cappuzzo et al., 2010). (SIGN, 2014)

Recommendation 2.6.5.1	Grade
In patients with stage IV non-squamous NSCLC who do not experience disease progression and have a preserved performance status after 4-6 cycles of platinum-based therapy, treatment with maintenance pemetrexed is suggested.	В

Recommendation 2.6.5.2	Grade
In patients with stage IV NSCLC, switch maintenance therapy with chemotherapy agents other than pemetrexed has not demonstrated an improvement in overall survival and is not recommended.	В

Recommendation 2.6.5.3	Grade
In patients with stage IV NSCLC who do not experience disease progression after 4-6 cycles of platinum-based double agent chemotherapy, there is insufficient evidence to recommend maintenance therapy with erlotinib.	

Good practice point

Ensure patients are offered participation in a clinical trial when available and appropriate.

Clinical question 2.6.6

In patients with advanced/stage IV NSCLC aged over 70, and/or with poor performance status, what is the effectiveness of first-line therapy?

Evidence summary

A clinical guideline (NCCN, V8 2017), a Cochrane review (Santos et al., 2015) and a randomised phase III trial (Zukin et al., 2013) addressed this clinical question.

Poor performance status

A multicentre phase III randomised trial (Zukin et al., 2013) compared single-agent pemetrexed versus combination carboplatin/pemetrexed as first-line management in patients with advanced NSCLC and a ECOG performance status of 2. The analysis included 205 patients, 102 patients assigned to receive pemetrexed and 103 assigned to receive carboplatin/pemetrexed. However, the guideline development group noted that the prevalence of comorbidities amongst patients in the trial was low in both arms. Although the median number of cycles was four in both arms, only 53.9% of patients in the pemetrexed arm completed the prescribed four cycles compared with 70.9% in the carboplatin/pemetrexed arm (p=0.012). Best response could not be determined in 34.4% and 23.3% of patients in the pemetrexed and carboplatin/pemetrexed arms, respectively, due to the lack of confirmation by response evaluation criteria in solid tumours (RECIST). Among evaluable patients, objective response rates were 10.5% in the pemetrexed arm (seven of 67) and 24% in the carboplatin/pemetrexed arm (19 of 79; p=0.032). The 6and 12-month PFS rates were 18.4% and 2% versus 48.9% and 17%, respectively. The OS distributions were statistically significant in favour of the combination arm (HR 0.62; 95% CI, 0.46 to 0.83; p=0.001). However, there were four documented treatment-related deaths in the combination arm (3.9%) and the frequency of grades 3 and 4 anaemia (3.9% v 11.7%), neutropenia (1.0% v 6.8%), and thrombocytopenia (0% v 1.0%) were higher in the combination arm. The study concluded that combination chemotherapy with carboplatin/pemetrexed is superior to single-agent therapy in patients with advanced NSCLC and an ECOG performance status of 2, combination therapy should be offered to these patients.

The National Comprehensive Cancer Network (NCCN, V8 2017) guideline states that unfit patients of any age (performance status (3-4) do not benefit from cytotoxic treatments, except erlotinib, afatinib, or gefitinib for EGFR mutation-positive and crizotinib for ALK-positive tumours of non-squamous NSCLC or NSCLC NOS. (NCCN, V8 2017)

Elderly patients

A recent Cochrane review (Santos et al., 2015) aimed to assess the effectiveness and safety of different cytotoxic chemotherapy regimens for previously untreated elderly patients with advanced (stage IIIb and IV) NSCLC. The study included 51 trials: non-platinum single-agent therapy versus non-platinum combination therapy (seven trials) and non-platinum combination therapy versus platinum combination therapy (44 trials). The reviews results were as follows:

Non-platinum single-agent versus non-platinum combination therapy

Low-quality evidence suggests that these treatments have similar effects on overall survival (HR 0.92, 95% confidence interval (CI) 0.72 to 1.17; participants = 1062; five RCTs), one year OS (risk ratio (RR) 0.88, 95% CI 0.73 to 1.07; participants = 992; four RCTs), and PFS (HR 0.94, 95% CI 0.83 to 1.07; participants = 942; four RCTs). Non-platinum combination therapy may better improve ORR compared with non-platinum single-agent therapy (RR 1.79, 95% CI 1.41 to 2.26; participants = 1014; five RCTs; low-quality evidence). (Santos et al., 2015)

Differences in effects on major adverse events between treatment groups were as follows: anaemia: RR 1.10, 95% CI 0.53 to 2.31; participants = 983; four RCTs; very low-quality evidence; neutropenia: RR 1.26, 95% CI 0.96 to 1.65; participants = 983; four RCTs; low-quality evidence; and

thrombocytopenia: RR 1.45, 95% CI 0.73 to 2.89; participants = 914; three RCTs; very low-quality evidence. (Santos et al., 2015)

Non-platinum therapy versus platinum combination therapy

Platinum combination therapy probably improves OS (HR 0.76, 95% CI 0.69 to 0.85; participants = 1705; 13 RCTs; moderate quality evidence), 1 year OS (RR 0.89, 95% CI 0.82 to 0.96; participants = 813; 13 RCTs; moderate-quality evidence), and ORR (RR 1.57, 95% CI 1.32 to 1.85; participants = 1432; 11 RCTs; moderate-quality evidence) compared with non-platinum therapies. Platinum combination therapy may also improve PFS, although our confidence in this finding is limited because the quality of evidence was low (HR 0.76, 95% CI 0.61 to 0.93; participants = 1273; nine RCTs). (Santos et al., 2015)

Effects on major adverse events between treatment groups were as follows:

anaemia: RR 2.53, 95% CI 1.70 to 3.76; participants = 1437; 11 RCTs; low-quality evidence; thrombocytopenia: RR 3.59, 95% CI 2.22 to 5.82; participants = 1260; nine RCTs; low-quality evidence; fatigue: RR 1.56, 95% CI 1.02 to 2.38; participants = 1150; seven RCTs; emesis: RR 3.64, 95% CI 1.82 to 7.29; participants = 1193; eight RCTs; and peripheral neuropathy: RR 7.02, 95% CI 2.42 to 20.41; participants = 776; five RCTs; low-quality evidence. (Santos et al., 2015)

Recommendation 2.6.6.1	Grade
In elderly patients (age 70-79 years) with stage IV NSCLC who have good performance status and limited co-morbidities, treatment with a platinum doublet chemotherapy is recommended.	В

Recommendation 2.6.6.2	Grade
In patients with stage IV NSCLC with a performance status of 2, single agent chemotherapy may be considered. Platinum doublet chemotherapy is suggested over single agent chemotherapy if the performance status of 2 is cancer related rather than co-morbidity associated.	R

Recommendation 2.6.6.3		
Unfit patients of any age (performance status (3-4)) do not benefit from cytotoxic chemotherapy. However if patients harbor an EGFR or ALK mutation positive tumour, they may be considered for treatment with targeted therapies.	с	

Good practice point

A comprehensive geriatric assessment should be considered in patients over 70 years.

Good practice point

In patients with stage IV NSCLC, who are 80 years or over, the benefit of chemotherapy is unclear and should be decided based on individual circumstances.

Good practice point

Ensure patients are offered participation in a clinical trial when available and appropriate.

Good practice point

Patients should be referred for assessment by the palliative care service.

Clinical question 2.6.7

In patients with advanced/stage IV NSCLC how effective is second and third-line therapy in patients with NSCLC who progress and relapse?

Evidence summary

This is a rapidly evolving area of research. Not all treatments discussed in the evidence summary are currently reimbursed in Ireland.¹

In patients with advanced NSCLC who have received platinum as part of their first-line treatment randomised evidence does not support the use of combination chemotherapy as second-line treatment (Di Maio et al., 2009).

The following single agent treatments have shown benefit in clinical trials as second and/or third-line treatment:

Docetaxel			
Patient population:	Study/Author:	Results:	
Patients with performance status (PS) of 0 to 2 and stage IIIb/IV NSCLC previously treated with a platinum-	(Shepherd et al., 2000)	Time to progression was longer for docetaxel patients	
	Intervention:	than for best supportive care patients (10.6 v 6.7 weeks, respectively; p<.001), as was median survival	
	Docetaxel	(7.0 v 4.6 months; log-rank test, p=.047).	
based chemotherapy regimen.	Comparison:		
	Best Supportive Care		
Pemetrexed (non squamous histology only)			
Patient population:	Study/Author:	Results:	
Patients with advanced NSCLC, PS 0-2, previously treated with chemotherapy.	(Hanna et al., 2004)	Median progression-free survival was 2.9 months for	
	Intervention:	each arm, and median survival time was 8.3 versus 7.9 months (p=not significant) for pemetrexed and	
······································	Pemetrexed	docetaxel, respectively.	
	Comparison:		
	Docetaxel		
	Erlotinib		
Patient population:	Study/Author:	Results:	
Patients with advanced	(Garassino et al., 2013)	Median overall survival was 8.2 months (95% CI 5.8–	
NSCLC previously treated with a platinum-based	Intervention:	10.9) with docetaxel versus 5.4 months (4.5–6.8) with erlotinib (adjusted HR 0.73, 95% CI 0.53–1.00; p=0.05).	
chemotherapy, and wild-type	Erlotinib	Progression-free survival was significantly better with	
EGFR.	Comparison:	docetaxel than with erlotinib: median progression- free survival was 2.9 months (95% CI 2.4–3.8) with	
	Docetaxel	docetaxel versus 2.4 months (2.1–2.6) with erlotinib (adjusted HR 0.71, 95% CI 0.53–0.95; p=0.02).	

¹ The process for reimbursement is outlined on page 130.

Erlotinib (cont.)		
Patient population:	Study/Author:	Results:
Patients with stage IIIb or IV NSCLC, previous treatment with chemotherapy, and performance status of 0 to 2 were eligible.	(Kawaguchi et al., 2014)	Median progression-free survival for erlotinib versu
	Intervention:	docetaxel was 2.0 v 3.2 months (HR 1.22; 95% Cl, 0.97 to 1.55; p=.09), and median OS was 14.8 v
	Erlotinib	12.2 months (HR 0.91; 95% Cl, 0.68 to 1.22; p=.53),
	Comparison:	respectively.
	Docetaxel	
Patient population:	Study/Author:	Results:
Patients with NSCLC	(Ciuleanu et al., 2012)	Median overall survival was 5.3 months (95% Cl
that progressed on first- line, platinum-doublet	Intervention:	4.0–6.0) with erlotinib and 5.5 months (4.4–7.1) with chemotherapy (HR 0.96, 95% CI 0.78–1.19;
chemotherapy.	Erlotinib	log-rank p=0.73). Median PFS in the erlotinib group
	Comparison:	was 6.3 weeks (95% CI 6.1–6.9) versus 8.6 weeks (7.1–12.1) in the chemotherapy group. There was no
	Chemotherapy (standard docetaxel or pemetrexed regimens, at the treating investigators' discretion)	statistically significant difference in PFS between the two treatment groups (HR 1.19, 95% Cl 0.97–1.46; p=0.089).
Patient population:	Study/Author:	Results:
Patients with stage	(Shepherd et al., 2005)	Progression-free survival was 2.2 months and
IIIb or IV NSCLC, with performance status from 0	Intervention:	1.8 months, respectively (HR 0.61, adjusted for stratification categories; p<0.001). Overall survival was
to 3, were eligible if they had	Erlotinib	6.7 months and 4.7 months, respectively (HR 0.70;
received one or two prior chemotherapy regimens.	Comparison:	p<0.001), in favour of erlotinib.
	Placebo	
	Afatinib (Squamou	us histology only)
Patient population:	Study/Author:	Results:
Stage IIIb or IV squamous	(Soria et al., 2015)	Median progression-free survival was 2.6 months (95%
cell carcinoma of the lung who had progressed after at	Intervention:	CI 2.0–2.9) with afatinib and 1.9 months (1.9–2.1) with erlotinib (HR 0.81 [95% CI 0.69–0.96]; p=0.0103).
least four cycles of platinum-	Afatinib	Median overall survival was 7.9 months (95% Cl
based-chemotherapy.	Comparison:	7.2–8.7) in the afatinib group and 6.8 months (5.9–7.8) in the erlotinib group (HR 0.81 [95% CI 0.69–0.95];
	Erlotinib	p=0.0077).
Patient population:	Study/Author:	Results:
Patients with stage IIIb or	(Miller et al., 2012)	Median overall survival was 10.8 months (95% CI 10.0-
IV adenocarcinoma and an ECOG PS of 0–2 who had	Intervention:	12.0) in the afatinib group and 12.0 months (10.2– 14.3) in the placebo group (HR 1.08, 95% CI 0.86–1.35;
received one or two previous	Afatinib	p=0.74). Median progression-free survival was longer
chemotherapy regimens and had disease progression	Comparison:	in the afatinib group (3.3 months, 95% Cl 2.79–4.40) than it was in the placebo group (1.1 months, 0.95– 1.68; HR 0.38, 95% Cl 0.31–0.48; p<0.0001).
after at least 12 weeks of treatment with erlotinib or gefitinib.	Placebo	

Nivolumab		
Patient population:	Study/Author:	Results:
Patients with non-squamous NSCLC that had progressed during or after platinum- based doublet chemotherapy.	(Borghaei et al., 2015)	Median overall survival was 12.2 months (95% Cl, 9.7
	Intervention:	to 15.1) with nivolumab and 9.4 months (95% CI, 8.1 to 10.7) with docetaxel, representing a 28% lower risk
	Nivolumab	of death with nivolumab (HR 0.72; 95% CI, 0.60 to
	Comparison:	0.88; p<0.001). The median progression-free survival was 2.3 months (95% CI, 2.2 to 3.3) in the nivolumab
	Docetaxel	group and 4.2 months (95% Cl, 3.5 to 4.9) in the docetaxel group.
Patient population:	Study/Author:	Results:
Patients with advanced	(Brahmer et al., 2015)	The median overall survival was 9.2 months (95%
squamous-cell NSCLC who have disease progression	Intervention:	confidence interval [CI], 7.3 to 13.3) with nivolumab versus 6.0 months (95% CI, 5.1 to 7.3) with docetaxel.
during or after first-line	Nivolumab	The median progression-free survival was 3.5 months
chemotherapy.	Comparison:	with nivolumab versus 2.8 months with docetaxel (HR for death or disease progression, 0.62; 95% CI, 0.47 to
	Docetaxel	0.81; p<0.001).
	Pembrolizumab	(PDL1 positive)
Patient population:	Study/Author:	Results:
Patients with previously	(Herbst et al., 2016)	Overall survival was significantly longer for
treated, PD-L1-positive, advanced NSCLC.	Intervention:	pembrolizumab 2 mg/kg versus docetaxel (HR 0.71, 95% CI 0.58–0.88; p=0.0008) and for pembrolizumab
	Pembrolizumab (2 mg/kg)	10 mg/kg versus docetaxel (0.61, 0.49–0.75; p<0.0001). Median progression-free survival was 3.9
	Pembrolizumab (10 mg/kg)	months with pembrolizumab 2 mg/kg, 4.0 months
	Comparison:	with pembrolizumab 10 mg/kg, and 4.0 months with docetaxel, with no significant difference for
	Docetaxel	pembrolizumab 2 mg/kg versus docetaxel (0.88, 0.74– 1.05; p=0.07) or for pembrolizumab 10 mg/kg versus docetaxel (HR 0.79, 95% CI 0.66–0.94; p=0.004).

The following single agents have also shown benefit as second/third-line treatment in patients with ALK positive tumours:

Crizotinib		
Patient population:	Study/Author:	Results:
Patients with locally advanced or metastatic ALK-positive lung cancer who had received one prior platinum-based regimen.	PROFILE 1007 (Shaw et al., 2013)	The median progression-free survival was 7.7 months in the crizotinib group and 3.0 months in the
	Intervention:	chemotherapy group (HR for progression or death with crizotinib, 0.49; 95% CI, 0.37 to 0.64; p<0.001).
	Crizotinib	The median overall survival was 20.3 months (95% CI,
	Comparison:	18.1 to not reached) with crizotinib and 22.8 months (95% CI, 18.6 to not reached) with chemotherapy (HR
	Pemetrexed or Docetaxel	for death in the crizotinib group, 1.02; 95% CI, 0.68 to 1.54; p=0.54)

Ceritinib (previously treated with crizotininb)			
Patient population:	Study/Author:	Results:	
Patients with ALK-rearranged locally advanced or metastatic cancer that progressed despite standard therapy.	ASCEND-1, - Phase I study, - (Kim et al., 2016, Shaw et al., 2014)	An overall response was reported in 60 (72% [95% CI 61–82]) of 83 ALK inhibitor-naive patients and 92 (56% [49–64]) of 163 ALK inhibitor-pretreated patients. Median duration of response was 17.0 months (95%	
	Intervention:	CI 11.3–non-estimable [NE]) in ALK inhibitor-naive patients and 8.3 months (6.8–9.7) in ALK inhibitor-	
	Ceritinib	pretreated patients. Median progression-free survival	
	Comparison:	was 18.4 months (95% CI 11.1–NE) in ALK inhibitor- naive patients and 6.9 months (5.6–8.7) in ALK	
	-	inhibitor pretreated patients.	
Alectinib (previously treated with crizotinib)			
Patient population:	Study/Author:	Results:	
Patients with locally advanced or metastatic ALK-rearranged NSCLC who had experienced	(Ou et al., 2016) - Phase II study	ORR by independent review committee (IRC) was 50 (95% CI, 41% to 59%), and the median duration of response (DOR) was 11.2 months (95% CI, 9.6 month	
progression while receiving crizotinib.	Intervention:	to not reached). Median IRC-assessed progression-free survival for all 138 patients was 8.9 months (95% CI,	
	Alectinib	5.6 to 11.3 months).	
	Comparison:		
	-		
Patient population:	Study/Author:	Results:	
Patients with stage IIIb–IV, ALK-positive NSCLC who	(Shaw et al., 2016) - Phase II study	At the time of the primary analysis (median follow- up 4.8 months [IQR 3.3–7.1]), 33 of 69 patients with	
progressed on previous crizotinib.	Intervention:	measurable disease at baseline had a confirmed partial response; thus, the proportion of patients achieving	
	Alectinib	an objective response by the independent review	
	Comparison:	committee was 48% (95% CI 36–60).	
	-		

The following single agent has also shown benefit as second/third-line treatment in patients with EGFR positive tumours:

Osimertinib (T790M mutation positive)		
Patient population:	Study/Author:	Results:
documented disease progression after previous	(Janne et al., 2015) - Phase I study	Among 127 patients with centrally confirmed EGFR T790M who could be evaluated for response, the
	Intervention:	response rate was 61% (95% CI, 52 to 70). In contrast, among 61 patients without centrally detectable EGFR
	Osimertinib	T790M who could be evaluated for response, the
	Comparison:	response rate was 21% (95% CI, 12 to 34). The median progression-free survival was 9.6 months (95% CI,
	_	8.3 to not reached) in EGFR T790M–positive patients and 2.8 months (95% Cl, 2.1 to 4.3) in EGFR T790M– negative patients.

Osimertinib (T790M mutation positive) cont.		
Patient population:	Study/Author:	Results:
Patients with T790M-positive advanced non-small cell	Mok et al., 2017 - Phase III study	The median duration of progression-free survival was significantly longer with osimertinib than with
lung cancer, who had disease progression after first-line	Intervention:	platinum therapy plus pemetrexed (10.1 months vs. 4.4 months; HR 0.30; 95% CI, 0.23 to 0.41; p<0.001).
EGFR-TKI therapy.	Osimertinib	The objective response rate was significantly better
	Comparison:	with osimertinib (71%; 95% CI, 65 to 76) than with platinum therapy plus pemetrexed (31%; 95% CI, 24
	Pemetrexed plus either carboplatin or cisplatin	to 40) (odds ratio for objective response, 5.39; 95% Cl, 3.47 to 8.48; p<0.001).

Recommendation 2.6.7.1	Grade
Second-line systemic anticancer therapy (SACT) with single agent drugs should be considered. The choice of agent to be used should be made on a case by case basis taking	В
into account previous treatment, mutation status and co-morbidities.	

Good practice point

This is a rapidly evolving area; please refer to the NCCP protocols for the latest information.

Good practice point

In all cases if patients are eligible for entry into clinical trials, it is recommended.

Clinical question 2.6.8

Is there any evidence that particular regimens or drugs are more effective or less toxic than others for the first-line treatment of limited-stage and extensive-stage small-cell lung cancer (SCLC)?

Evidence summary

A Cochrane review (Amarasena et al., 2015) addressed this clinical question.

Amarasena et al. (2015) aimed to determine the effectiveness of platinum chemotherapy regimens compared with non-platinum chemotherapy regimens in the treatment of SCLC with respect to survival, tumour response, toxicity and quality of life.

Survival at 24 months

There was no statistically significant difference between interventions (RR 1.06, 95% CI 0.85 to 1.31). There was no substantial heterogeneity present in the data ($I^2 = 31\%$).

Subgroup LD-SCLC:

Nine studies reported data from 12-month survival comparisons for participants with limited disease, involving 1,209 participants. Of these, 597 received a platinum-based and 612 received a non-platinum based regimen. At 24 months, 255 participants were alive: 133 from the platinum-based arm and 122 from the non-platinum based arm. There was no statistically significant difference between interventions (RR 1.07, 95% CI 0.7 to 1.65). There was substantial heterogeneity present in the data ($I^2 = 57\%$).

Subgroup ED-SCLC:

Fifteen studies reported data from 24-month survival comparisons for participants with extensive disease, involving 2,381 participants. Of these, 1,200 received a platinum-based and 1,181 received a non-platinum-based regimen. There was no statistically significant difference between interventions (RR 1.11, 95% CI 0.71 to 1.75). There was substantial heterogeneity present in the data (I² = 35%).

Complete response

There was a statistically significant effect favouring platinum-based chemotherapy regimens (RR 1.32, 95% CI 1.14 to 1.54). There was no substantial heterogeneity present in the data ($I^2 = 46\%$)

Subgroup LD-SCLC:

There was a statistically significant effect favouring platinum-based regimens (RR 1.19, 95% CI 1.02 to 1.40). There was no heterogeneity ($I^2 = 0\%$).

Subgroup ED-SCLC:

There was a statistically significant effect, favouring platinum-based chemotherapy regimens (RR 1.45, 95% CI 1.17 to 1.80). There was no substantial heterogeneity present in the data ($I^2 = 24\%$).

The effect on quality of life could not be adequately assessed.

Many other combinations have been evaluated in patients with extensive-stage disease, with little consistent evidence of benefit when compared with EP. While phase III data exists regarding irinotecan and platinum combinations (Lara et al., 2009, Hanna et al., 2006, Noda et al., 2002, Hermes et al., 2008) they do not appear superior with potentially significant toxicity.

Recommendation 2.6.8.1	Grade
In patients with either limited-stage or extensive-stage small-cell lung cancer (SCLC), platinum-based chemotherapy with either cisplatin or carboplatin plus etoposide is recommended.	Α

Recommendation 2.6.8.2	Grade
Non-platinum combinations can be considered in patients with limited-stage and extensive-	Δ
stage SCLC.	A

Good practice point

Ensure patients are offered participation in a clinical trial when available and appropriate.

Good practice point

Patients should be referred for assessment by the palliative care service.

Clinical question 2.6.9

In patients with limited-stage and extensive-stage SCLC is there any role for maintenance chemotherapy?

Evidence summary

A meta-analysis (Zhou et al., 2013) addressed this clinical question.

A meta-analysis (Zhou et al., 2013) reported that maintenance chemotherapy did not prolong overall survival (HR 0.87; 95% CI: 0.71–1.06; p=0.172). Overall, maintenance chemotherapy was associated with a 13% improvement in OS, but the difference was not statistically significant and there was significant heterogeneity in the included studies. The authors noted that the results were not affected by exclusion of any specific trial.

Recommendation 2.6.9.1	Grade
There is no data to support maintenance therapy in limited-stage or extensive-stage SCLC.	С

Clinical question 2.6.10

of initial chemotherapy.

How effective is second-line systemic therapy in patients with SCLC who progress and relapse?

Evidence summary

Two randomised phase III trials (O'Brien et al., 2006, von Pawel et al., 2014) addressed this clinical question.

For patients with small-cell lung cancer, further chemotherapy is routinely considered at relapse after first-line therapy. However, proof of clinical benefit has not been documented. (O'Brien et al., 2006)

O'Brien et al. (2006) randomly assigned patients with relapsed SCLC not considered as candidates for standard intravenous therapy to best supportive care (BSC) alone (n = 70) or oral topotecan (2.3 mg/m²/d, days 1 through 5, every 21 days) plus BSC (topotecan; n = 71). In the intent-to-treat population, survival was prolonged in the topotecan group (log-rank p=0.0104). Median survival with BSC was 13.9 weeks (95% CI, 11.1 to 18.6) and with topotecan, 25.9 weeks (95% CI, 18.3 to 31.6). Statistical significance for survival was maintained in a subgroup of patients with a short treatment-free interval (\leq 60 days). Response to topotecan was 7% partial and 44% stable disease. Patients on topotecan had slower quality of life deterioration and greater symptom control. Principal toxicities with topotecan were haematological: grade 4 neutropenia, 33%; grade 4 thrombocytopenia, 7%; and grade 3/4 anaemia, 25%. Comparing topotecan with BSC, infection grade 2 was 14% versus 12% and sepsis 4% versus 1%; other grade 3/4 events included vomiting 3% versus 0, diarrhoea 6% versus 0, dyspnoea 3% versus 9%, and pain 3% versus 6%. Toxic deaths occurred in four patients (6%) in the topotecan arm. All cause mortality within 30 days of random assignment was 13% on BSC and 7% on topotecan. Chemotherapy with oral topotecan is associated with prolongation of survival and quality of life benefit in patients with relapsed SCLC.

von Pawel et al. (2014) randomly assigned 637 patients with refractory or sensitive SCLC at a ratio of 2:1 to 21-day cycles of amrubicin 40 mg/m² intravenously (IV) on days 1 to 3 or topotecan 1.5 mg/m² IV on days 1 to 5. Median OS was 7.5 months with amrubicin versus 7.8 months with topotecan (HR 0.880; p=0.170); in refractory patients, median OS was 6.2 and 5.7 months, respectively (HR 0.77; p=0.047). Median PFS was 4.1 months with amrubicin and 3.5 months with topotecan (HR 0.802; p=0.018). ORR was 31.1% with amrubicin and 16.9% with topotecan (odds ratio, 2.223; p<0.001). Grade \geq 3 treatment-emergent adverse events in the amrubicin and topotecan arms were: neutropenia (41% v 54%; p=0.004), thrombocytopenia (21% v 54%; p<0.001), anaemia (16% v 31%; p<0.001), infections (16% v 10%; p=0.043), febrile neutropenia (10% v 3%; p=0.003), and cardiac disorders (5% v 5%; p=0.759); transfusion rates were 32% and 53% (p<0.001), respectively. NQO1 polymorphisms did not influence safety outcomes. Amrubicin had demonstrable activity and a safety profile comparable to that of topotecan in patients with SCLC. Amrubicin also demonstrated higher response rates and a minimal survival advantage of 2 weeks in patients with refractory disease.

Recommendation 2.6.10.1	Grade
In patients with relapsed refractory SCLC, second-line therapy should be considered.	В
Recommendation 2.6.10.2	Grade
Recommendation 2.6.10.2 Re-initiation of the previously administered first-line chemotherapy regimen is	

Recommendation 2.6.10.3GradeSingle agent chemotherapy should be considered in patients with primary refractory SCLC
to maintain or improve quality of life.B

2.7 Radiation Oncology

Responsibility for the implementation of radiation oncology recommendations

While the CEO, General Manager and the Clinical Director of the hospital have corporate responsibility for the implementation of the recommendations in this National Clinical Guideline, each member of the multidisciplinary team is responsible for the implementation of the individual guideline recommendations relevant to their discipline.

The literature used in the development of this guideline was based on the 7th edition of the Lung Cancer TNM staging system. The 8th edition of the TNM staging system was published in December 2016 (Brierley et al., 2016), this may lead to changes in recommendations over time, which should be taken into consideration at multidisciplinary team meetings.

Clinical question 2.7.1

In patients with non-small cell lung cancer (NSCLC) early stage disease (T1-T2 N0 M0) who are unfit for surgery, what is the effectiveness of stereotactic radiotherapy, standard radical radiotherapy and radiofrequency ablation?

Evidence summary

Two clinical guidelines (NICE, 2011, Vansteenkiste et al., 2013) and a retrospective study (Ambrogi et al., 2015) addressed this clinical question.

Crabtree et al. (2010) found that among their group of patients with clinical stage I NSCLC significantly more patients who had received surgical treatment were alive at 3 years than patients who had received SBRT/SABR. The treatment groups did not differ in terms of 3-year cancer-specific survival or local control. When the analyses were limited to patients with clinical stage la 3-year disease-free survival did not differ significantly between the SBRT/SABR (n = 57) and surgery (n = 288) patients, but the surgery patients achieved significantly higher rates of local control at 3 years compared to the SBRT/SABR patients. Analysis of the patients with clinical stage lb found no differences in 3-year disease-free survival or local control between the SBRT/SABR (n = 19) and surgery (n = 174) patients. In a separate series of analyses the authors attempted to address the baseline differences between the treatment groups in terms of age, clinical T stage, comorbidities and % predicted FEV₁ and D_{LCO} by matching surgery patients to the SBRT/ SABR patients. Subsequent matched-patient analyses revealed no differences between the groups in terms of overall survival, disease-specific survival, or local control. No treatment-related deaths occurred as a consequence of SBRT although some other complications were associated with the treatment. In the surgery group, the operative mortality rate was 15/462 patients and 179/462 patients experienced complications associated with the surgical treatment. (NICE, 2011)

Grills et al. (2010) reported that rates of freedom from any failure, causes-specific survival, distant metastasis and local, regional, and loco-regional recurrence did not differ significantly between patients with stage I NSCLC who had received treatment with either SBRT/SABR or wedge resection, but the overall survival rate was significantly higher in the surgery patients than in those patients who had received SBRT/SABR. A second set of analyses excluding patients with pT4, synchronous primary or no biopsy revealed similar results with the exception of the loco-regional occurrence rate which was now significantly higher in the patients who had received surgery. Multivariate analyses showed that in the patients who had received SBRT/SABR squamous histology and the presence of synchronous primary tumour were significant predictors of distant metastasis and in the patients who had received wedge resection, visceral pleural invasion and stage Ib were significant predictors of distant metastasis. In addition, in all patients, age > 71 years was a significant predictor of overall survival. No treatment-related deaths were observed as a consequence of either treatment, but a number of adverse events were associated with both treatments. (NICE, 2011)

In patients unfit for surgery, SBRT/SABR is the treatment of choice for peripherally located stage I NSCLC (if SBRT/SABR is not available, a hypofractionated radiotherapy schedule with a high biologically equivalent dose is advised). (Vansteenkiste et al., 2013)

SBRT/SABR has led to improved population-based survival in elderly patients (Haasbeek et al., 2012), and the convenience of this outpatient therapy over three to eight visits has also led to a reduction in the proportion of untreated patients. The SBRT/SABR dose should be to a biologically equivalent tumour dose of \geq 100 Gy, prescribed to the encompassing isodose. (Vansteenkiste et al., 2013)

A systematic review comparing outcomes of SBRT/SABR and surgery in patients with severe COPD revealed a higher 30-day mortality following surgery but similar OS at 1 and 3 years (Palma et al., 2012). Analysis of SBRT/SABR outcomes in 676 patients found a median OS of 40.7 months, and actuarial 5-year

rates of initial local, regional and distant recurrence of 10.5%, 12.7% and 19.9%, respectively (Senthi et al., 2012). A systematic review of SABR in centrally located tumours found local control rates of >85% with biologically equivalent doses \geq 100 Gy (Senthi et al., 2013). The risk of high grade toxic effect was <9% when the biologically equivalent normal tissue dose was \leq 210 Gy. Prospective trials of SBRT/SABR versus primary resection are now underway. (Vansteenkiste et al., 2013)

Radiofrequency ablation

Ambrogi et al. (2015) compared RFA and wedge resection in terms of disease recurrence and survival, as intent-to-treat therapy for stage I NSCLC in 121 marginal or non-surgical candidates.

Over a 7 year period, 59 patients were treated for stage I NSCLC with wedge resection and 62 with RFA. At a median follow-up of 36 and 42 months for wedge resection and for RFA (p=0.232), local recurrence rate was 2 and 23%, respectively (p=0.002). The 1-, 2- and 5-year overall survival (disease-free interval) rates were 100% (96%), 96% (90%) and 52% (76%) for wedge resection, and 93% (87%), 72% (63%), and 35% (55%) for RFA (p=0.044 and p=0.01, respectively). None of the analysed parameters was found to be risk factor for disease recurrence and survival, except stage T2, which significantly affected disease-recurrence, overall and cancer-related survival and disease-free interval in the RFA group.

Nevertheless, the debate seems open for patients with stage Ia disease. In these cases, RFA seems to have equivalent outcomes compared with wedge resection, thus the selection of patients is more challenging due to the acceptable risk level, which depends also on the different success rate of the non-surgical alternative therapies. Further prospective randomised studies are necessary, in order to clearly compare the outcomes of different modality therapies, but also to better define patients considered at high risk. (Ambrogi et al., 2015)

There is some evidence to show radiofrequency ablation can achieve local tumour control in patients with clinical stage Ia tumours; however there are no published studies that determine its utility compared to other management strategies and further clinical trials comparing RFA to other local therapies are therefore needed.

Recommendation 2.7.1.1	Grade
Every patient with early stage disease (T1-T2 N0 M0) should be evaluated for fitness for surgery. If unfit for surgery or surgery is declined, patients should be considered for radical treatment, preferably SBRT/SABR or radical radiotherapy.	А

Recommendation 2.7.1.2	Grade
Radiofrequency ablation (RFA) can be considered for patients with clinical stage la tu who are not suitable for surgery following discussion at a multidisciplinary team m (Refer to <i>Clinical question 2.2.3</i>).	

Good practice point

If SBRT/SABR is not available or not feasible radical radiotherapy may be considered.

In patients with stage I-III NSCLC undergoing radical external beam radiation therapy what is the role and effectiveness of the following:

- a) New technology (IMRT/4DCT breathing adapted radiotherapy)
- b) Altered radiation fractionation schedules (Hyper and/or accelerated fractionation)
- c) Dose

Evidence summary

Three clinical guidelines (NICE, 2011, SIGN, 2014, Vansteenkiste et al., 2013), two retrospective studies (Cole et al., 2014, Liao et al., 2010) and an individual patient data meta-analysis (Mauguen et al., 2012) addressed this clinical question.

a) New technology

Newer technologies can reduce target volumes and hence normal tissue toxicity and can allow dose escalation to take place with the goal of increasing the biologically effective dose (BED) to a level to achieve maximal tumour treatment with acceptable toxicity outcomes (De Ruysscher et al., 2012, Machtay et al., 2012). Using isotoxic dose escalation, 4D planning in this study would allow, on average, an additional increase in total dose by a factor of 1.19 compared with 3D planned dose escalation. For 55 Gy in 20 fractions with a BED of 70.13 Gy₁₀ this would mean an average increase to a BED of 83.3 Gy₁₀. Some studies suggest that an increase in absolute dose of 1 Gy is associated with a 3% reduction in death (Kong et al., 2005). By optimising dose prescription, potential gains for the patient in tumour control probability (TCP) can be realised while balancing the risk of acceptable normal tissue complication probability (NTCP) (Machtay et al., 2012). Mean Lung Dose (MLD) was lower for 19/20 of 4D planned cases, with an average reduction from 13.1 Gy to 11.1 Gy. This reduction in MLD can allow for dose escalation and where this is not possible, such as for conventional treatments that are not adapted or escalated, could theoretically lead to lower lung toxicity rates. (Cole et al., 2014)

Four-dimensional computed tomography (4DCT) based plans had lower planning target volume (PTV), a lower dose to organs at risk and lower predicted NTCP rates on LKB modelling (p<0.006). The clinical algorithm showed no difference for predicted 2-year survival and dyspnoea rates between the groups, but did predict for lower oesophageal toxicity with 4DCT plans (p=0.001). There was no correlation between LKB modelling and the clinical algorithm for lung toxicity or survival. Dose escalation was possible in 15/20 cases, with a mean increase in dose by a factor of 1.19 (10.45 Gy) using 4DCT compared with 3DCT plans. (Cole et al., 2014)

4DCT can theoretically improve therapeutic ratio and dose escalation based on dosimetric parameters and mathematical modelling. However, when individual characteristics are incorporated, this gain may be less evident in terms of survival and dyspnoea rates.

4DCT allows potential for isotoxic dose escalation, which may lead to improved local control and better overall survival. (Cole et al., 2014)

Mean follow-up times in the 4DCT/IMRT and CT/3DCRT groups were 1.3 (range, 0.1–3.2) and 2.1 (range, 0.1–7.9) years, respectively. The hazard ratios for 4DCT/IMRT were <1 for all disease end points; the difference was significant only for OS. The toxicity rate was significantly lower in the IMRT/4DCT group than in the CT/ 3DCRT group. V₂₀ was significantly higher in the 3DCRT group and was a significant factor in determining toxicity. Freedom from DM was nearly identical in both groups. (Liao et al., 2010)

Treatment with 4DCT/IMRT was at least as good as that with 3DCRT in terms of the rates of freedom from locoregional progression (LRP) and distant metastasis (DM). There was a significant reduction in toxicity and a significant improvement in OS. (Liao et al., 2010)

b) Altered radiation fractionation schedules

One study of low quality was identified that examined the effectiveness of induction chemotherapy + hyperfractionated accelerated radiotherapy (HART) relative to the effectiveness of induction chemotherapy + standard once-daily RT in patients with stage IIIa and IIIb NSCLC (Belani et al., 2005). Overall survival, progression-free survival, response and incidence of grade 3 and above toxicities did not differ between the treatment groups. (NICE, 2011)

The European Society for Medical Oncology (ESMO) (Vansteenkiste et al., 2013) recommends the use of accelerated radiotherapy (e.g. 66Gy in 24 fractions) based on the results of a meta-analysis conducted by Maugen et al. (2012). The meta-analysis included individual patient data from phase III trials, it found that modified fractionation improved OS as compared with conventional schedules (hazard ratio (HR) = 0.88, 95% CI, 0.80 to 0.97; p=.009), resulting in an absolute benefit of 2.5% (8.3% to 10.8%) at 5 years. In both NSCLC and SCLC, the use of modified radiotherapy increased the risk of acute oesophageal toxicity (odds ratio [OR] = 2.44 in NSCLC and OR = 2.41 in SCLC; p<.001) but did not have an impact on the risk of other acute toxicities. The study concluded that patients with nonmetastatic NSCLC derived a significant OS benefit from accelerated or hyperfractionated radiotherapy; a similar but non-significant trend was observed for SCLC.

The Scottish Intercollegiate Guideline Network (SIGN) looked at hyperfractionated and/or accelerated radiotherapy in stage III NSCLC. They identified a meta-analysis and two RCTs (Lung Cancer Disease Group, 2000, Sause et al., 2000, Saunders et al., 1999) that suggest a survival benefit for accelerated and hyperfractionated radical radiation therapy compared with conventional radiotherapy. No benefit was observed for hyperfractionated radical radiation therapy of standard time length over conventional radiotherapy (SIGN, 2014).

Saunders et al. (1997) showed that continuous hyperfractionated accelerated radiation therapy (CHART) is more effective than 60 Gy over six weeks in patients with disease stage I to III not receiving chemotherapy.

c) Dose

A Cochrane review and a systematic review identified 44 retrospective case series including a total of 3,683 patients treated with regimens of radiotherapy with doses of more than 50 Gy in 25 fractions or its radiobiological equivalent (Rowell and Williams, 2004, Qiao et al., 2003). The studies are difficult to compare because of unknown variation in entry criteria or pre-treatment prognostic criteria. Study results are inconsistent, with three and five year survival rates ranging from 0–55%. It is not clear whether the inconsistencies are due to variations in patient selection, treatment techniques or completeness of follow-up. (SIGN 2014)

Recommendation 2.7.2.1	Grade
In patients receiving combined chemoradiotherapy standard fractionation should be used to deliver a radical dose equivalent to 60 – 66 Gy.	Α
Recommendation 2.7.2.2	Grade
When a radical dose is considered, 3D-CRT is the minimum technique to be used.	
Recommendation 2.7.2.3	Grade
When available, CHART can be considered in patients with non-operable stage I-III non- small cell lung cancer (NSCLC) not receiving chemotherapy.	Α

Good practice point

4DCT should be used when available.

Clinical question 2.7.3

In patients with stage III NSCLC undergoing radical three-dimensional conformal radiotherapy (3DCRT):

- a) What are the most useful predictors of lung and oesophageal toxicity?
- b) What are the most useful measures to reduce toxicity: clinical/technical?

Evidence summary

Two clinical guidelines (SIGN, 2014, Lim et al., 2010), two retrospective studies (Cole et al., 2014, Liao et al., 2010) and a review (Marks et al., 2010) addressed this clinical question.

A clinical oncologist specialising in lung oncology should determine suitability for radical radiotherapy, taking into account performance status and comorbidities. (SIGN, 2014)

When planning radical radiotherapy to the thorax it is crucial to take into account the dose delivered to the normal lung tissue, oesophagus, spinal cord and heart. In order to ensure the maximum sparing of normal tissues, three-dimensional treatment planning is mandatory (Senan et al., 2004). However, defining limits of dose tolerated by these tissues is complex as these limits vary according to the total dose delivered, fractionation regimen and use of concurrent chemotherapy (Milano et al., 2007, Schultheiss et al., 1995, van Baardwijk et al., 2008a, van Baardwijk et al., 2008b). The risk of developing radiotherapy-induced lung toxicity can be estimated by calculating the dose-volume histogram of the lungs, including V_{20} and mean lung dose (MLD) (Graham et al., 1999, Kwa et al., 1998). (Lim et al., 2010)

The greatest limitation of thoracic radiotherapy is radiotherapy induced lung toxicity (Graham et al., 1999, Kwa et al., 1998, Roach et al., 1995, Gandara et al., 2003). Radiotherapy planning parameters such as V_{20} and MLD are effective tools for predicting radiation pneumonitis (Graham et al., 1999, Kwa et al., 1998). (Lim et al., 2010)

There is a paucity of RCT data on reducing radiation-related morbidity, either by altering the radiation technique or by adding in other agents to treatment regimes. In many chemoradiotherapy trials pulmonary function limits are set for exclusion criteria. Safe lower limits of respiratory function (FEV₁ or T_{LCO}) for radical radiotherapy have not been established (Lim et al., 2010). (SIGN, 2014)

According to the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) lung-specific paper (Marks et al., 2010) it is prudent to limit V_{20} to \leq 30–35% and mean lung dose to \leq 20–23 Gy (with conventional fractionation) if one wants to limit the risk of radiation pneumonitis to \leq 20% in definitively treated patients with non–small cell lung cancer.

Cole et al. (2014) investigated the potential dosimetric and clinical benefits predicted by using fourdimensional computed tomography (4DCT) compared with 3DCT in the planning of radical radiotherapy for non-small cell lung cancer.

Twenty patients were planned using free breathing 4DCT then retrospectively delineated on threedimensional helical scan sets (3DCT). Beam arrangement and total dose (55 Gy in 20 fractions) were matched for 3D and 4D plans. Plans were compared for differences in planning target volume (PTV) geometrics and NTCP for organs at risk using dose volume histograms. Tumour control probability and NTCP were modelled using the Lyman–Kutcher–Burman (LKB) model. This was compared with a predictive clinical algorithm (Maastro), which is based on patient characteristics, including: age, performance status, smoking history, lung function, tumour staging and concomitant chemotherapy, to predict survival and toxicity outcomes. Potential therapeutic gains were investigated by applying isotoxic dose escalation to both plans using constraints for MLD (18 Gy), oesophageal maximum (70 Gy) and spinal cord maximum (48 Gy). (Cole et al., 2014)

In addition to oesophageal dosimetry, the use of concurrent delivery of chemotherapy has been shown to increase toxicity rates (Belderbos et al., 2005, Auperin et al., 2010). (Cole et al., 2014)

Radiation pneumonitis is an important consideration for patients with lung cancer, particularly for those with already compromised respiratory function (Wang et al., 2002). This potentially life-threatening complication is generally experienced in the first months after treatment. Established theoretical models to predict the risk of pneumonitis include MLD or the volume of lung receiving more than a threshold dose (e.g. V_{20}) (Kwa et al., 1998, Fay et al., 2005). Predicted rates for lung toxicity in this group were 22% less for the 4D group. When specific tumour and patient characteristics were combined with dosimetric parameters, this apparent improvement was not seen. This suggests that despite close attention to dose constraints and dose volume histogram (DVH) characteristics, clinical factors may have a larger impact on pneumonitis risks and outweigh any improvements that 4DCT may convey on an individual basis. (Cole et al., 2014)

Treatment with 4DCT/IMRT was at least as good as that with 3DCRT in terms of the rates of freedom from locoregional progression (LRP) and distant metastasis (DM). There was a significant reduction in toxicity and a significant improvement in OS (Liao et al., 2010).

Recommendation 2.7.3.1	Grade
Perform three-dimensional treatment planning in patients undergoing radical thoracic radiotherapy. 4DCT should be performed where available.	В

Recommendation 2.7.3.2	Grade
The dose volume parameters for the organs at risk (e.g. oesophagus, lung) need to be taken into account. It is prudent to limit V_{20} to $\leq 30-35\%$ and mean lung dose to $\leq 20-23$ Gy (with conventional fractionation) if one wants to limit the risk of radiation pneumonitis to $\leq 20\%$ in definitively treated patients with NSCLC.	В

Good practice point

Pre-radical radiotherapy pulmonary function tests are recommended.

Good practice point

A clinical oncologist specialising in lung oncology should determine suitability for radical radiotherapy, taking into account performance status, comorbidities and tumour volume.

In patients with NSCLC post surgery, which groups should receive postoperative radiotherapy (PORT) or adjuvant RT?

a) pN2 R0

b) any pN, R1, R2 resection

Evidence summary

A clinical guideline (Lim et al., 2010) and a meta-analysis (PORT meta-analysis Trialist Group, 1998) addressed this clinical question.

a) pN2 R0

The role of postoperative radiotherapy in treatment of patients with completely resected NSCLC remains unclear. The PORT Meta-analysis Trialists Group undertook a systematic review and meta-analysis of the available evidence from randomised trials.

Updated data were obtained on individual patients from all available randomised trials of postoperative radiotherapy versus surgery alone. Data on 2128 patients from nine randomised trials (published and unpublished) were analysed by intention to treat. Median follow-up was 3.9 years (2.3–9.8 for individual trials) for surviving patients. The results show a significant adverse effect of postoperative radiotherapy on survival (HR 1.21 [95% CI 1.08–1.34]). Subgroup analyses suggest that this adverse effect was greatest for patients with stage I/II, NO–N1 disease, whereas for those with stage III, N2 disease there was no clear evidence of an adverse effect. The authors concluded that postoperative radiotherapy is detrimental to patients with early-stage completely resected NSCLC and should not be used routinely for such patients. The role of postoperative radiotherapy in the treatment of N2 tumours is not clear and may warrant further research. (PORT Meta-analysis Trialists Group, 1998)

b) Any pN, R1, R2 resection

The role of PORT in patients with a positive resection margin (R1 resection) is unknown as there are no randomised trials examining the role of radiotherapy in this group of patients (Wind et al., 2007, Jassem, 2007). PORT is often given in routine practice if pathological examination shows tumour at the resection margin on the basis of retrospective series showing a reduction in the local recurrence rates following PORT (Massard et al., 2000, Kimura and Yamaguchi, 1994, Ghiribelli et al., 1999, Gebitekin et al., 1994, Heikkila et al., 1986) or an excess of local recurrence rates without PORT (Snijder et al., 1998). However, some retrospective series have shown high local recurrence rates despite the use of PORT (Gebitekin et al., 1994, Snijder et al., 1998). It should also be noted that a retrospective study showed an adverse impact of radiotherapy on survival in patients irradiated for positive margins (Massard et al., 2000). (Lim et al., 2010)

A literature review on this topic suggested that patients with stage I and II disease and positive margins are more likely to benefit from PORT than patients with stage III disease (Wind et al., 2007). Indeed, survival of patients with stage I and II non-small cell lung cancer and an R1 resection of the bronchial resection margin is significantly worse compared with the stage corrected survival after radical surgery (Liewald et al., 1992). The potential benefit of this treatment in terms of reduction of the risk of local recurrence rate has to be weighed carefully against the risk of morbidity and mortality related to PORT. (Lim et al., 2010)

The optimal dose/fractionation for PORT is not known, but modern studies suggest that a dose in the range of 50-55 Gy using conventional fractionation should be used (Trodella et al., 2002, Bogart and Aronowitz, 2005). There are few randomised data investigating the benefit of PORT and its optimal sequencing in the context of adjuvant chemotherapy. In adjuvant chemotherapy trials allowing the use of PORT, the radiotherapy was delivered after completion of adjuvant chemotherapy and did not seem

to offset the beneficial effect of adjuvant chemotherapy (Douillard et al., 2006, Arriagada et al., 2004, Scagliotti et al., 2003). (Lim et al., 2010)

Recommendation 2.7.4.1	Grade
In patients with R1 resection, regardless of N status, postoperative radiotherapy (PORT)	B
should be proposed sequentially delivering a radical dose of 60 Gy in 30 fractions.	в

Recommendation 2.7.4.2	Grade
In patients with a pN2 stage and a complete resection there is no consensus to the benefit	В
of PORT. If considered, PORT should be delivered at a dose of 50 Gy standard fractionation.	

Recommendation 2.7.4.3	Grade
PORT is not indicated in patients with a complete resection R0 and N0 disease.	В

Clinical question 2.7.5

In patients with small-cell lung cancer (SCLC), what is the evidence supporting the role of radiotherapy (including technical parameters)

- a) Limited-stage prophylactic cranial irradiation (PCI)
- b) Limited-stage thoracic radiotherapy
- c) Extensive-stage PCI
- d) Extensive-stage thoracic radiotherapy

Evidence summary

A meta-analysis (Pignon et al., 1992), three randomised controlled trials (Le Pechoux et al., 2009, Slotman et al., 2007, Slotman et al., 2015) and a retrospective study (Patel et al., 2009) addressed this clinical question.

a) Limited-stage prophylactic cranial irradiation (PCI)

A large retrospective analysis evaluating the effects of PCI on overall survival and cause-specific survival (Patel et al., 2009) found overall survival at 2 years, 5 years, and 10 years was 23%, 11%, and 6%, respectively, in patients who did not receive PCI. In patients who received PCI, the 2-year, 5-year, and 10-year overall survival rates were 42%, 19%, and 9%, respectively (p<0.001). The cause-specific survival rate at 2 years, 5 years, and 10 years was 28%, 15%, 11%, respectively, in patients who did not receive PCI and 45%, 24%, 17%, respectively, in patients who did receive PCI (p<0.001). On multivariate analysis of cause-specific and overall survival, age at diagnosis, sex, grade, extent of primary disease, size of disease, extent of lymph node involvement, and PCI were found to be significant (p<0.001). Significantly improved overall and cause-specific survival was observed in patients treated with prophylactic cranial irradiation on unadjusted and adjusted analyses. This study concurs with the previously published European experience. PCI should be considered for patients with limited-stage small cell lung cancer.

The optimum dose of prophylactic cranial irradiation (PCI) for limited-stage small-cell lung cancer (SCLC) is unknown. A randomised clinical trial (Le Pechoux et al., 2009) compared the effect of standard versus higher PCI doses on the incidence of brain metastases. Seven hundred and twenty patients with limited-stage SCLC in complete remission after chemotherapy and thoracic radiotherapy from 157 centres in 22 countries were randomly assigned to a standard (n=360, 25 Gy in 10 daily fractions of 2.5 Gy) or higher PCI total dose (n=360, 36 Gy) delivered using either conventional (18 daily fractions of 2 Gy) or accelerated hyperfractionated (24 fractions in 16 days with two daily sessions of 1.5 Gy separated by a minimum interval of 6 h) radiotherapy. After a median follow-up of 39 months (range 0–89 months), 145 patients had brain metastases; 82 in the standard-dose group and 63 in the higher-dose group.

There was no significant difference in the 2-year incidence of brain metastases between the standard PCI dose group and the higher-dose group, at 29% (95% CI 24–35) and 23% (18–29), respectively (HR 0.80 [95% CI 0.57–1.11], p=0.18). Two hundred and twenty six patients in the standard-dose group and 252 in the higher-dose group died; 2-year overall survival was 42% (95% CI 37–48) in the standard-dose group and 37% (32–42) in the higher-dose group (HR 1.20 [1.00–1.44]; p=0.05). The authors concluded that no significant reduction in the total incidence of brain metastases was observed after higher-dose PCI, but there was a significant increase in mortality. PCI at 25 Gy should remain the standard of care in limited-stage SCLC. (Le Pechoux et al., 2009)

b) Limited-stage thoracic radiotherapy

Pignon et al. (1992) performed a meta-analysis of thoracic RT for SCLC. It included 13 trials comparing chemotherapy alone to chemotherapy and thoracic RT totalling 2,140 patients, of which 433 were excluded as they had extensive disease. 1,862 of the 2,103 patients who could be evaluated died; the median follow-up of the surviving patients was 43 months. The relative risk of death in the combined therapy group compared to the chemotherapy group was 0.86 (95% CI 0.78-0.94; p=0.001). There was

a 5.4% benefit in terms of overall survival at three years for the combined therapy group. The authors concluded that thoracic RT moderately improves survival in patients with limited SCLC who are treated with combination chemotherapy.

There is controversy regarding the optimal timing of thoracic radiotherapy, with some meta-analysis suggesting a small OS benefit of early delivery concomitantly to chemotherapy. However, this is associated with an increase in treatment related toxicity (Lu et al., 2014, Spiro et al., 2006, Pijls-Johannesma et al., 2005, Huncharek and McGarry, 2004, Fried et al., 2004).

c) Extensive-stage PCI

Slotman et al., (2007) conducted a randomised trial (European Organisation for Research and Treatment of Cancer 08993-22993) of PCI in patients with extensive-stage small-cell lung cancer who had had any degree of response to chemotherapy. Patients were randomly assigned to undergo PCI or to receive no further therapy. The primary end point was the time to symptomatic brain metastases. CT scanning or MRI of the brain was performed when any predefined key symptom suggestive of brain metastases was present, but was not done routinely prior to PCI. The two groups (each with 143 patients) were well balanced regarding baseline characteristics. The cumulative risk of brain metastases within 1 year was 14.6% in the PCI group and 40.4% in the control group (HR 0.27; p<0.001). PCI was associated with an increase in median overall survival from 5.4 to 6.7 months after randomisation. The 1-year survival rate was 27.1% in the PCI group and 13.3% in the control group (p=0.003). PCI had side effects but did not have a clinically significant effect on global health status. The largest mean difference between the two arms was observed in fatigue and hair loss, which were greater in those who received PCI (Slotman et al., 2009). PCI reduced the incidence of symptomatic brain metastases and prolonged overall survival in patients with extensive-stage small-cell lung cancer (Slotman et al., 2007).

d) Extensive-stage thoracic radiotherapy

Most patients with extensive-stage small-cell lung cancer who undergo chemotherapy, and prophylactic cranial irradiation, have persistent intrathoracic disease. Slotman et al. (2015) assessed thoracic radiotherapy for treatment of this patient group.

A phase III randomised controlled trial at 42 hospitals: 16 in Netherlands, 22 in the UK, three in Norway, and one in Belgium, enrolled patients with WHO performance score 0–2 and confirmed extensive-stage small-cell lung cancer who responded to chemotherapy. Four hundred and ninety-eight patients were randomly assigned (1:1) to receive either thoracic radiotherapy (30 Gy in ten fractions) or no thoracic radiotherapy. All underwent prophylactic cranial irradiation. Three withdrew informed consent, leaving 247 patients in the thoracic radiotherapy group and 248 in the control group.

Mean interval between diagnosis and randomisation was 17 weeks. Median follow-up was 24 months. Overall survival at 1 year was not significantly different between groups: 33% (95% CI 27–39) for the thoracic radiotherapy group versus 28% (95% CI 22–34) for the control group (HR 0.84, 95% CI 0.69–1.01; p=0.066). However, in a secondary analysis, 2-year overall survival was 13% (95% CI 9–19) versus 3% (95% CI 2–8; p=0.004). Progression was less likely in the thoracic radiotherapy group than in the control group (HR 0.73, 95% CI 0.61–0.87; p=0.001). At 6 months, progression-free survival was 24% (95% CI 19–30) versus 7% (95% CI 4–11; p=0.001). No severe toxic effects were recorded. The most common grade 3 or higher toxic effects were fatigue (11 vs 9) and dyspnoea (three vs four). (Slotman et al., 2015)

The authors concluded that thoracic radiotherapy in addition to prophylactic cranial irradiation should be considered for all patients with extensive-stage small-cell lung cancer who respond to chemotherapy. (Slotman et al., 2015)

This is supported by a recent meta-analysis (Palma et al., 2016) that combined the RCT detailed above (Slotman et al., 2015) with an older RCT (Jeremic et al., 1999). Palma et al. (2016) examined the role of thoracic radiotherapy (TRT) in patients receiving platinum-based chemotherapy for extensive-stage small-cell lung cancer. Overall, the delivery of TRT was associated with improved overall survival (HR 0.81; 95% confidence interval, 0.69-0.96; p=.014) and progression-free survival (HR 0.74; 95% confidence interval, 0.64-0.87, p<.001). Bronchopulmonary toxicity (grade 3 or higher) was similar in both groups (\leq 2%). Oesophageal toxicity (grade 3 or higher) was 6.6% in the TRT arm and 0% in the non-TRT arm (p<.001). The study concluded that TRT improves overall survival and progression-free survival in patients with extensive-stage small-cell lung cancer, with a small incremental risk of oesophageal toxicity. Future randomised trials to identify possible survival benefits of TRT dose escalation in patients with extensive-stage small-cell lung cancer would assist clinicians in selecting the optimal dose while minimising oesophageal toxicity.

Recommendation 2.7.5.1	Grade
Consolidation prophylactic cranial irradiation (PCI) is recommended in patients with limited-stage small-cell lung cancer (SCLC) having a response to chemoradiotherapy.	Α

Recommendation 2.7.5.2	Grade
In combined modality care, thoracic radiotherapy is recommended in patients with limited- stage SCLC and should be initiated as early as possible.	Α

Recommendation 2.7.5.3	Grade
Consolidation PCI is recommended in patients with extensive-stage SCLC having a response	٨
to chemotherapy.	~

Recommendation 2.7.5.4	Grade
Consolidation thoracic radiotherapy may be considered in patients with extensive-stage SCLC having a response to chemotherapy.	Α

2.8 Palliative Care

Responsibility for the implementation of palliative care recommendations

While the CEO, General Manager and the Clinical Director of the hospital have corporate responsibility for the implementation of the recommendations in this National Clinical Guideline, each member of the multidisciplinary team is responsible for the implementation of the individual guideline recommendations relevant to their discipline.

The literature used in the development of this guideline was based on the 7th edition of the Lung Cancer TNM staging system. The 8th edition of the TNM staging system was published in December 2016 (Brierley et al., 2016), this may lead to changes in recommendations over time, which should be taken into consideration at multidisciplinary team meetings.

Clinical question 2.8.1

Does the involvement of specialist palliative care result in better quality of life for patient or family, symptom control, or improved cost effectiveness compared with standard care alone (no involvement from specialist palliative care)?

Evidence summary

An ASCO provisional clinical opinion (Smith et al., 2012) addressed this clinical question.

Based on strong evidence from a phase III RCT (Temel et al., 2010), patients with metastatic NSCLC should be offered concurrent palliative care and standard oncologic care at initial diagnosis. Patients assigned to early palliative care had a better quality of life than patients assigned to standard care (mean score on the FACT-L scale [in which scores range from 0 to 136, with higher scores indicating better quality of life], 98.0 vs. 91.5; p=0.03). In addition, fewer patients in the palliative care group than in the standard care group had depressive symptoms (16% vs. 38%, p=0.01). Despite the fact that fewer patients in the early palliative care group than in the standard care group received aggressive end-of-life care (33% vs. 54%, p=0.05), median survival was longer among patients receiving early palliative care (11.6 months vs. 8.9 months, p=0.02). While a survival benefit from early involvement of palliative care has not yet been demonstrated in other oncology settings, substantial evidence demonstrates that palliative care when combined with standard cancer care or as the main focus of care leads to better patient and caregiver outcomes. These include improvement in symptoms, QOL, and patient satisfaction, with reduced caregiver burden. Earlier involvement of palliative care also leads to more appropriate referral to and use of hospice, and reduced use of futile intensive care. While evidence clarifying optimal delivery of palliative care to improve patient outcomes is evolving, no trials to date have demonstrated harm to patients and caregivers, or excessive costs, from early involvement of palliative care. (Smith et al., 2012)

Recommendation 2.8.1.1	Grade
Patients with stage IV non-small cell lung cancer (NSCLC) should be offered co	oncurrent R
specialist palliative care and standard oncological care at initial diagnosis.	D

Good practice point

All patients with advanced stage lung cancer should have their palliative care needs assessed.

Clinical question 2.8.2

Who should comprise the palliative care multidisciplinary team?

Evidence summary

A report from the National Advisory Committee on Palliative Care (DoH, 2001) addressed the clinical question.

Better outcomes tend to be observed where teams are categorised as 'specialist' and consist of multidisciplinary trained staff. There is no strong evidence to support a particular team composition in each setting, and no research evidence on the level of specialisation required for team members. There is no evidence on the number of team members from each profession required to enable provision of an effective and efficient service.

According to the Report of the National Advisory Committee on Palliative Care (DoH, 2001) all specialist palliative care services should have at least one consultant in palliative medicine, with a support team of non-consultant hospital doctors (NCHDs).

Specialist palliative care services should have nursing staff with a skill mix to meet the requirements of the service.

Specialist services should also have the following staff available full-time, part-time or with regular sessions:

- Physiotherapist(s)
- Occupational therapist(s)
- Social worker(s)
- Staff specifically trained to meet the psychosocial needs of the patient, family and carers
- Suitably trained and experienced members of staff who will be responsible for bereavement services
- Co-ordinator of spiritual care
- Speech and language therapist
- Dietitian/clinical nutritionist
- Pharmacist
- Complementary therapist(s). (DoH, 2001)

Good practice point

A specialist palliative care multidisciplinary team meeting should be available to provide, physical, psychological, social and spiritual care to patients with lung cancer and their carers.

Development of this National Clinical Guideline

3.1 Epidemiology

Smoking

The biggest risk factor in the development of lung cancer is smoking. In Ireland, it is estimated that 5,200 people die annually from smoking related diseases. The overall prevalence of cigarette smoking in Ireland in 2014 was 19.5%, compared to 21.5% for 2013. This equates to over 70,000 fewer smokers in 2014 compared to 2013 (Hickey and Evans, 2014).

Incidence

The National Cancer Registry Ireland (NCRI), reported that on average approximately 37,500 neoplasms were registered annually in Ireland between 2012-2014 (NCRI, 2016). The annual average incidence of lung cancer in Ireland was 2,381 (C33-34 bronchus, lung and trachea) per annum (2012-2014) (NCRI, 2016) (Table 6). Lung cancer overtook colorectal cancer as the second most common cancer diagnosed in females (average counts 2011-2013) for the first time in 2015 (NCRI, 2015). Lung cancer was the leading cause of cancer death in both sexes, comprising 18% of cancer deaths in women and 24% of cancer deaths in men during the period 2011-2013 (NCRI, 2016).

able 6. Annual average incidence of lung cancer in Ireland. (NCRI, 2016)
--

Lung Cancer Cases (2012-2014)			
	Females	Males	Total
Lung cancer (C33-34)	1,078	1,303	2,381

According to the NCRI (2016) there was little change observed in the relative frequency or ranks of the common cancer types from the last annual report NCRI (2015). Figure 4 shows the relative frequencies of the most common invasive cancers diagnosed in females in Ireland from 2009-2013, including non-melanoma skin cancer. Lung cancer made up 7.5% of all female cancers (NCRI, 2015).

Figure 4. Shows the relative frequencies of the most common invasive cancers diagnosed in females in Ireland, 2011-2013.(NCRI, 2015)

Figure 5 shows the relative frequencies reported in 2015, of the most common invasive cancers diagnosed in males in Ireland from 2009-2013, including non-melanoma skin cancer. Lung cancer made up 8% of all male cancers.

Figure 5. Shows the relative frequencies of the most common invasive cancers diagnosed in males in Ireland, 2011-2013 (NCRI, 2015)

Table 7 shows the ranking of the most commonly diagnosed invasive cancers in Ireland from 2012-2014, excluding non-melanoma skin cancer. Colorectal and lung cancer were the 2nd and 3rd most common cancers in males, lung cancer is the second most common ahead of colorectal cancer in females (NCRI, 2016).

|--|

	Female		Male	
Invasive cancer	% Rank		%	Rank
Breast	30.1	1	-	-
Prostate	-	-	30.3	1
Lung	11.1	2	11.7	3
Colorectal	10.4	3	13.3	2

Mortality

Table 8 shows the mortality rate from lung cancer in Ireland, 2011-2013. The number of deaths from lung cancer was 749 females and 1,079 males (NCRI, 2016).

Table 8. Number of deaths and mortality rate from lung cancer, 2011-2013 (NCRI, 2016)

	Death		Rate/100,000	
	Female	Male	Female	Male
Lung	749	1,079	28.2	47.7

Figure 6 and Figure 7 shows the relative frequencies of the most common cancer deaths as reported in 2015 (NCRI, 2015). In 2015, lung cancer was ranked as the most common cancer death in Ireland in both sexes (Table 9), comprising 18.4% of cancer deaths in women and 23.5% of cancer deaths in men during the period 2012-2014 (NCRI, 2016).

Males

Figure 6. Relative frequency of the most common cancer deaths in females in Ireland, 2011-2012 (NCRI, 2015)

Figure 7. Relative frequency of the most common cancer deaths in males in Ireland, 2011-2012 (NCRI, 2015)

Invasive cancer	Female		Male	
	%	Rank	%	Rank
Breast	17.1	2	-	-
Prostate	-	-	11.5	3
Lung	18.4	1	23.5	1
Colorectal	10.4	3	12.9	2

Survival

Out of 2,338 patients diagnosed with lung cancer during 2013, a total of 1,389 were still alive at the end of that year (one-year prevalence). Lung cancer has very high mortality and, of the >37,000 cases diagnosed during 1994-2013, only 12% were alive at the close of 2013 (NCRI, 2015).

Cancer projections 2015-2040

Lung cancer case numbers increased significantly for females from 1994 to 2010, by 3.9% annually. For males the numbers increased by 0.7% annually from 1994 to 2005 and by 3.3% thereafter. Incidence rates of lung cancer increased by 2.3% annually in females and decreased by 0.7% annually in males (NCRI, 2014). Cancer of the lung is projected to increase by 95%-196% in females and by 72%-121% in males. Table 10 displays the projected number of incident cases of lung cancer 2015-2040 based on demographic projections (NCRI, 2014).

Table 10. Projected numbers of incident cases 2015-2040 (with % increase/decrease compared to 2010): cancerof the lung (NCRI, 2014)

	Lung cancer					
	Fen	nale	Male			
Year	Projected no. of inci- dent cases 2015-2040 (demographic projec- tions)	% increase compared to 2010	Projected no. of inci- dent cases 2015-2040 (demographic projec- tions)	% increase compared to 2010		
2015	1,013	6	1,477	13		
2020	1,161	21	1,728	32		
2025	1,334	39	2,012	54		
2030	1,515	58	2,314	77		
2035	1,694	77	2,610	100		
2040	1,862	95	2,889	121		

3.2 Rationale for this National Clinical Guideline

The National Cancer Strategy (DoHC, 2006) recommended that national site-specific multidisciplinary groups be convened to develop national evidence-based clinical guidelines for cancer care. The principal objective of developing these guidelines is to improve the quality of care received by patients. Other objectives include:

- Improvement in patient outcomes,
- Potential for reduction in morbidity and mortality,
- Improvement in quality of life,
- Promotion of interventions of proven benefit and discouragement of ineffective ones,
- Improvements in the consistency and standard of care.

The National Cancer Strategy 2017-2026 (DoH, 2017) recommends: The NCCP will develop further guidelines for cancer care in line with National Clinical Effectiveness Committee (NCEC) standards.

3.3 Clinical and financial impact of lung cancer

The diagnosis, staging, and treatment of patients with lung cancer requires multidisciplinary care in an acute hospital setting. The majority of patients will require diagnostic tests (radiology, pathology) and depending on the treatment plan may require surgery, radiotherapy and chemotherapy.

A population-based cost analysis (Luengo-Fernandez et al., 2013) illustrated the economic burden of cancer on the European Union (EU). In 2009, cancer is estimated to have cost the EU €126 billion, with healthcare costs accounting for €51 billion (40%). They found that lung cancer had the highest economic

cost (\in 18.8 billion, 15% of overall cancer costs), followed by breast cancer (\in 15.0 billion, 12%), colorectal cancer (\in 13.1 billion, 10%), and prostate cancer (\in 8.43 billion, 7%).

Inpatient care was the major component of health-care costs in lung cancer ($\in 2.87$ billion, 68%). The highest productivity losses attributable to mortality were identified for lung cancer ($\notin 9.92$ billion; 23% of the $\notin 42.6$ billion in productivity losses because of all cancers). The costs of informal care were also highest for patients with lung cancer ($\notin 3.82$ billion; 16% of the $\notin 23.2$ billion total informal care provided). With lung cancer incidence expected to increase by 136% in females (Nordpred model) and 52% in males (NCRI, 2014), there could be a significant increase seen in healthcare costs per person in Ireland.

Most of the recommendations in this guideline represent current standard practice and are therefore cost neutral. However, the GDG have identified areas that require change in practice to ensure full implementation of the guideline. The potential resource implications of applying these recommendations have been considered (Appendix 6: Budget Impact Assessment). However, it is important to note that the cost effectiveness analysis and the budget impact analysis are carried out separately from the generation of clinical recommendations. The methodology applied is documented in Section 3.8 Methodology and literature review. For areas where additional resources are required to implement the guideline the resources required will be sought through the HSE service planning process.

3.4 Aim and objectives

The overall objectives of the NCCP's National Clinical Guideline 'Diagnosis, staging and treatment of patients with lung cancer' are:

- To improve the quality of clinical care,
- To reduce variation in practice,
- To address areas of clinical care with new and emerging evidence.

The guideline is based on the best research evidence in conjunction with clinical expertise, and developed using a clear evidence-based internationally used methodology.

3.5 Scope of the National Clinical Guideline, target population & target audience

3.5.1 Guideline scope

This National Clinical Guideline was developed to improve the standard and consistency of clinical practice in line with the best and most recent scientific evidence available.

This guideline focuses on the diagnosis, staging, and treatment of patients with lung cancer. This guideline does not include recommendations covering every detail of diagnosis, staging, and treatment. Instead this guideline focuses on areas of clinical practice:

- (i) known to be controversial or uncertain,
- (ii) where there is identifiable practice variation,
- (iii) where there is new or emerging evidence,
- (iv) where guidelines have potential to have the most impact.

This guideline focuses solely on the clinical management of patients with lung cancer. The NCCP has developed general practitioner (GP) referral guidelines, standardised GP referral forms, and GP electronic referral for patients with lung cancer. The NCCP in partnership with the Irish Cancer Society has commenced a cancer survivorship programme. The main goal for the NCCP Survivorship Programme is to empower patients to achieve their best possible health while living with and beyond a diagnosis of cancer. This involves providing information, guidance and support to survivors and their families and healthcare

professionals in relation to healthy lifestyle, disease prevention and control. It aims to promote a good quality of life and prolonged survival for people who experience cancer.

The NCCP has also a Lung National Clinical Leads Network with defined terms of reference. The output of this network includes the following:

- Development and agreement of Key Performance Indicators (KPIs),
- Organising annual multidisciplinary Cancer Quality and Audit Fora,
- Focus on cancer specific issues such as the development of information resources for patients and health professionals.

Patient information booklets/leaflets covering various aspects of the cancer journey are available on the NCCP website.

3.5.2 Target population

Patients that are covered by this guideline are:

Adults (18 years or older) with newly diagnosed lung cancer, or, those that have a suspected diagnosis of lung cancer in a hospital setting.

For guidance regarding patients with suspected lung cancer in the GP setting please refer to Appendix 3: Summary of the tools to assist in the implementation of the National Clinical Guideline.

3.5.3 Target audience

This guideline is intended for all health professionals involved in the diagnosis, staging and treatment of patients with lung cancer. While the CEO, General Manager and the Clinical Director of the hospital have corporate responsibility for the implementation of the recommendations in this Clinical Guideline, each member of the multidisciplinary team is responsible for the implementation of the individual guideline recommendations relevant to their discipline.

This guideline is also relevant to those involved in clinical governance, in both primary and secondary care, to help ensure that arrangements are in place to deliver appropriate care for the population covered by this guideline.

Whilst the guideline is focused on clinical care, it is expected to be of interest to patients with lung cancer and their significant others. A list of medical abbreviations used throughout the guideline can be found in Appendix 9: Glossary and abbreviations.

3.6 Governance and Conflicts of Interest

Governance of the guideline development process was provided by a multidisciplinary Guideline Steering Group which was chaired by the Director of the NCCP. Details of GDG members and Guideline Steering Group members are provided at the beginning of the document. Figure 8 outlines the stages of guideline development.

A GDG was responsible for the development and delivery of this National Clinical Guideline and included representatives from relevant professional groups (radiology, respiratory medicine, pathology, surgery, medical oncology, radiation oncology, palliative care) with expertise in the diagnosis, staging and treatment of patients with lung cancer, a project manager, a methodologist, a research officer, and a clinical librarian.

3.6.1 Conflict of interest statement

A conflict of interest form (see 'NCCP Methodology Manual') was signed by all GDG members and reviewers. The GDG was managed by the Chair to promote the highest professional standard in the development of this guideline. Where a conflict arises a GDG member absents themselves from discussion pertaining to their area of conflict.

3.7 Sources of funding

The guideline was commissioned and funded by the NCCP; however, the guideline content was not influenced by the NCCP or any other funding body. This process is fully independent of lobbying powers. All recommendations were based on the best research evidence integrated with clinical expertise.

3.8 Methodology and literature review

The methodology for the development of the guideline was designed by a research methodologist and is based on the principles of Evidence-Based Practice (EBP) (Sackett et al., 2000). The methodology is described in detail in the NCCP Methodology Manual for guideline development.

3.8.1 Step 1: Develop clinical questions

The first step in guideline development was to identify areas of new and emerging evidence, areas with identifiable variation in practice, or areas with potential to impact on patients care. These questions then formed the basis for the types of evidence being gathered, the search strategy, and the inclusion and exclusion criteria.

To formulate the clinical questions they were broken down into their component parts using the PICO(T) framework:

- Participant/Population
- Intervention/Exposure
- Control/Comparison
- Outcome
- Time

This process was carried out by discipline specific sub-groups. The GDG signed off the entire list of clinical questions to ensure a comprehensive guideline. The resulting 44 clinical questions are listed in Appendix 2: Clinical Questions in PICO format.

3.8.2 Step 2: Search for the evidence

The clinical questions formulated in step one were used to conduct literature searches of the primary literature. The systematic literature review protocol was developed for the guideline development process by the HSE librarians in conjunction with the NCCP (Appendix 4: Literature review protocol). The following bibliographic databases were searched in the order specified below using keywords implicit in the PICO(T) question and any identified subject headings:

- Cochrane Library
- Point-of-Care Reference Tools
- Medline
- Embase (where available)
- Other bibliographic databases such as PsycINFO, CINAHL, as appropriate.

The literature was searched based on the hierarchy of evidence. The literature was updated prior to publication. This necessitated a complete review and rewrite of the medical oncology section in July 2016. This is a live document, updates and reviews are carried out at three year intervals.

A literature search for the budget impact assessment was performed using the SIGN economic filter (Table 11. Economic literature review protocol). Full details of this search strategy are available in Appendix 6: Budget Impact Assessment.

3.8.3 Step 3: Appraise the literature for validity and applicability

International guidelines were appraised using the international, validated tool the AGREE II instrument (Brouwers et al., 2010). Primary papers were appraised using validated checklists developed by the Scottish Intercollegiate Guideline Network (SIGN).

Economic papers included in the Budget Impact Assessment (Appendix 6: Budget Impact Assessment) were appraised by a health economist using validated economic checklists developed by SIGN.

There were three main points considered when appraising all the research evidence:

- Are the results valid? (internal validity)
- What are the results? (statistical and clinical significance)
- Are the results applicable/generalisable to the patient/population of this guideline? (external validity)

3.9 Formulation and grading of recommendations

The evidence which addressed each clinical question, both from international guidelines and primary literature, was extracted into evidence tables. Recommendations were formulated through a formal structured process. A 'considered judgment form' (adapted from SIGN) was completed for each clinical question.

The following items were considered and documented:

- What evidence is available to answer the clinical question?
- What is the quality of the evidence?
 - » Is the evidence consistent?
 - » Is the evidence generalisable to the Irish population?
 - » Is the evidence applicable in the Irish context?
- What is the potential impact on the health system?
- What is the potential benefit versus harm to the patient?
- Are there resource implications?

The evidence summaries and recommendations were then written. Each recommendation was assigned a grade by the GDG. The grade reflected the level of evidence upon which the recommendations were based, the directness of the evidence, and whether further research is likely to change the recommendation. The levels of evidence tables and grading systems used are documented in Appendix 10: Levels of Evidence & Grading Systems.

Good practice points were based on the clinical expertise of the GDG. For the economic literature, key messages are presented in boxes entitled 'relevance to the guideline recommendations'.

Figure 8. The Stages of Guideline Development

3.10 Consultation process

3.10.1 Patient Advocacy

A collaborative approach is used in the development of the NCCP patient information, clinical guidelines and other national projects. All NCCP booklets are submitted to the National Adult Literacy Agency (NALA) (<u>www.nala.ie</u>) for the Plain English Award. This is to ensure comprehension and readability are in line with health literacy best practice standards. Service user testing is a key part of the process, and includes liaising with the HSE Patient Forum, online surveys, and engaging with other relevant patient groups e.g. Irish Cancer Society, Marie Keating Foundation.

The views and preferences of the target population were sought by inviting patient advocacy groups (HSE Patient Forum, Irish Cancer Society, Cancer Care West, Marie Keating Foundation, Gary Kelly Cancer Support Centre and Bray Cancer Support Centre) to engage in the National Stakeholder Review process (Appendix 5: Details of consultation process).

3.10.2 National Stakeholder review

The draft guideline was signed off by the entire GDG, and the NCCP Guideline Steering Group before going to National Stakeholder Review. It was circulated to relevant organisations and individuals for comment between June 12th – July 24th 2014. A full list of those invited to review this guideline is available in Appendix 5: Details of consultation process.

Stakeholders were asked to comment on the comprehensiveness of evidence used to form the recommendations. Stakeholders were required to submit feedback with supporting evidence on a form provided (see 'NCCP Methodology Manual') along with a completed conflict of interest form. A time-period of six weeks was allocated to submit comments.

All feedback and supporting evidence received was reviewed by the GDG. All modifications were documented.

3.11 External review

The amended draft guideline was then submitted for international expert review. The GDG nominated three international reviewers to provide feedback on the draft guideline. These reviewers were chosen based on their in-depth knowledge of the subject area and guideline development processes. The review followed the same procedure as the National Stakeholder Review. The guideline was circulated for comment between the 19th May 2016 and the 4th of July 2016.

A log was recorded of all submissions and amendments from the national stakeholder review and international expert review process and is available on request from the GDG.

3.12 Procedure to update this National Clinical Guideline

This guideline, published in 2017, will be considered for review by the NCCP in three years. Surveillance of the literature base will be carried out periodically by the NCCP. Any updates to the guideline in the interim period or as a result of three year review will be subject to the NCEC approval process and noted in the guidelines section of the NCCP and NCEC websites.

3.13 Implementation

This National Clinical Guideline should be reviewed by the multidisciplinary team and senior management in the hospital to plan the implementation of the recommendations.

The CEO, General Manager and the Clinical Director of the hospital have corporate responsibility for the implementation of the National Clinical Guideline and to ensure that all relevant staff are appropriately supported to implement the guideline. A Cancer Network Manager from the NCCP meets with each cancer centre on a quarterly basis for performance monitoring and service planning.

All medical staff with responsibility for the care of patients with lung cancer are required to:

- Comply with this National Clinical Guideline and any related procedures or protocols.
- Adhere to their code of conduct and professional scope of practice guidelines as appropriate to their role and responsibilities.
- Maintain their competency for the management and treatment of patients with lung cancer.

The implementation plan is based on the COM-B theory of behaviour change (Michie et al., 2011), as outlined in the NCCP Methodology Manual. The implementation plan outlines facilitators and barriers to implementation (Appendix 7: Implementation Plan).

This National Clinical Guideline will be circulated and disseminated through the professional networks who participated in developing and reviewing this document. The guideline will also be available on the NCEC and NCCP websites.

A multidisciplinary team (MDT) is responsible for the implementation of the guideline recommendations.

A summary of tools to assist in the implementation of this National Clinical Guideline are available in Appendix 3: Summary of the tools to assist in the implementation of the National Clinical Guideline.

3.14 Monitoring and evaluation

The National Cancer Control Programme engages regularly with the individual cancer centres and with Hospital Group structures. Discussion of performance data, improvement plans, resources including manpower, service planning and development takes place at regular review meetings between the NCCP and senior management at cancer centre and Hospital Group level.

3.15 Audit

It is important that both the implementation of the guideline and patient outcomes are audited to ensure that this guideline positively impacts on patient care. For audit criteria see Appendix 8: Audit criteria and monitoring.

3.16 Recommendations for research

Clinical trials are needed to compare the effectiveness of radiofrequency ablation and other local therapies in patients with early stage NSCLC who are high risk surgery candidates. (CQ 2.2.3)

The role of imaging surveillance in patients with NSCLC treated with curative intent needs to be elucidated. (CQ 2.2.4)

The role of MRI in staging patients with negative clinical evaluation findings has not been adequately studied. (CQ 2.2.6)

Appendix 1: Guideline Development Group terms of reference

Membership of the Guideline Development Group is outlined at the beginning of this document.

Terms of Reference

To develop a national evidence-based clinical guideline for the diagnosis, staging, and treatment of patients with lung cancer. Full terms of reference are available in the NCCP Methodology Manual for guideline development.

Appendix 2: Clinical Questions in PICO format

Radiology

	r (NSCLC) patients with mediastinal and hilar adenopathy what is the efficacy of ast) and PET-CT in the diagnosis of lung cancer?				
Population: NSCLC patients with mediastinal and hilar adenopathy					
Intervention: CT contrast, non-contrast CT, PET-CT					
Comparison: Mediastinoscopy and/or surgery					
Outcome: Mediastinal and hilar staging specificity and sensitivity					
cancer?	lung nodules, what is the efficacy of the following tests in the diagnosis of lung e aspiration and transthoracic needle biopsy copic surgery (VATS)				
Population:	Patients with peripheral lung nodules				
ntervention: - Percutaneous fine needle aspiration - Transthoracic needle biopsy - Guided bronchoscopy - Video assisted thoracoscopic surgery					
Comparison:	Histology				
Outcome: Complication rate, diagnosis of lung cancer, sensitivity and specificity					
Clinical question 2.2.3 In NSCLC patients with early ablative techniques?	y stage disease who are high risk surgery candidates, what is the effectiveness of				
Population:	Patients with NSCLC early stage disease who are high risk candidates for surgery				
Intervention:	Radiofrequency ablation				
Comparison:	-				
Outcome:	Local tumour control and survival				
Clinical question 2.2.4 For patients with NSCLC wh a role for imaging surveillar	o have undergone surgical resection or radiotherapy with curative intent, is there nce?				
Population:	Patients with NSCLC who have been treated with surgery or radiotherapy with curative intent				
Intervention:	Imaging surveillance				
Comparison:	-				

<u>Clinical question 2.2.5</u> For patients with NSCLC which of the following tests is most accurate for detecting metastatic spread to indeterminate adrenal nodules/ masses: chemical shift MRI, non-contrast CT, PET-CT?				
Population:	Patients with lung cancer with metastatic spread of indeterminate adrenal nodules/ masses			
Intervention:	Chemical shift MRI, non-contrast CT, PET-CT			
Comparison:	-			
Outcome:	Detection of metastatic spread to indeterminate adrenal nodules			
<u>Clinical question 2.2.6</u> For patients with NSCLC wh PET-CT?	ich of the following tests is most accurate for detecting brain metastases: MRI, CT,			
Population:	Patients with NSCLC with brain metastases			
Intervention:	MRI, CT, PET-CT			
Comparison: -				
Outcome: Detection of brain metastases				
<u>Clinical question 2.2.7</u> For patients with NSCLC wh bone scan, CT, MRI, PET-CT?	ich of the following tests is most accurate for detecting bone metastases: isotope			
Population:	For patients with NSCLC with suspected bone metastases			
Intervention:	Isotope bone scan, CT, MRI, PET-CT			
Comparison:	_			
Outcome:	Detection of bone metastases			
Clinical question 2.2.8 In patients with limited-stag	ge SCLC on diagnostic CT, does PET-CT change management?			
Population:	Patients with limited-stage SCLC on diagnostic CT			
Intervention:	PET-CT			
Comparison:	-			
Outcome:	Outcome management decisions			

Respiratory Medicine

<u>Clinical question 2.3.1</u> What is the efficacy of bronchoscopy in identifying lung cancer?			
Patients with suspected lung cancer			
Bronchoscopy			
Clinical follow-up			
Diagnosis of lung cancer, sensitivity and specificity			
adenopathy: What is the efficacy of EBUS, EBUS/EUS and mediastinoscopy in the			
Patients with mediastinal adenopathy			
Intervention: Diagnostic tests a. EBUS b. EBUS/EUS c. Mediastinoscopy			
Surgery			
Treatment plan sensitivity and specificity			
sion and suspected lung cancer, what is the efficacy of pleural sampling in the			
Patients with pleural effusion and suspected lung cancer			
Pleural sampling			
-			
Diagnosis of lung cancer, sensitivity and specificity			
e interventions in the management of malignant airway obstruction?			
Patients with malignant airway obstruction			
Palliative interventions (delivered by bronchoscopy or external beam radiotherapy)			
-			
Outcome: Quality of life and morbidity			

Pathology

Pathology				
cancer (NSCLC)? B) When should immur	of histopathological analysis for small-cell lung cancer (SCLC) vs. non-small cell lung nohistochemical analysis be performed? el(s) of immunohistochemical stains for NSCLC subtypes?			
Population:	Patients with NSCLC and SCLC			
Intervention:	Histopathological subtype analysis, immunohistochemical analysis and staining			
Comparison:	-			
Outcome: Sensitivity, specificity, negative predictive value (NPV) and positive predictive v (PPV)				
<u>Clinical question 2.4.2:</u> What is the efficacy of the - Rose at EBUS - Frozen section	following diagnostic tools in identifying and staging lung cancer:			
Population:	Patients with lung cancer			
Intervention: ROSE at EBUS and frozen section				
Comparison: -				
utcome: Sensitivity, specificity, negative predictive value (NPV) and positive predictive value (NPV)				
-	w do cytological samples compare with tissue biopsy samples for tumour nemistry and predictive markers assessed by FISH or mutational analysis?			
Population:	Patients with lung cancer			
Intervention:	Cytological samples			
Comparison:	Tissue biopsy samples			
Outcome:	Sensitivity, specificity, negative predictive value (NPV) and positive predictive value (PPV)			
<u>Clinical question 2.4.4</u> What are optimal formalin	fixation times for future molecular diagnostics?			
Population:	Patients with non-small cell lung cancer			
Intervention:	Use of formalin for future molecular diagnostics			
Comparison:	-			
Outcome:	Fixation times to allow for adequate DNA extraction			

Surgery

Clinical queation 2.5.1 In patients with stage I & I outcomes?	II non-small cell lung cancer (NSCLC) how does the extent of lung resection effect					
Population:	Patients with stage I & stage II NSCLC					
Intervention:	Lung resection (wedge resection, anatomical segmentectomy and lobectomy)					
Comparison:	-					
Outcome:	Two year survival, five year survival, progression-free survival, overall survival, recovery from procedure, accuracy of technique, pain/symptoms					
Clinical question 2.5.2 In patients with clinical sta compare to thoracotomy?	age I NSCLC undergoing lobectomy, how does video-assisted thoracic surgery (VATS)					
Population:	Patients with clinical stage I NSCLC					
Intervention:	VATS					
Comparison:	Thoracotomy					
Outcome: Two year survival, five year survival, progression-free survival, overall survival, recovery from procedure, accuracy of technique, pain/symptoms						
Clinical question 2.5.3 Which pulmonary function	n tests should be used to determine fitness for resection?					
Population:	Patients with lung cancer who are potential surgical candidates					
Intervention:	ppo-FEV ₁ , ppo-D _{LCO} , VO ₂ max or stair test					
Comparison:	-					
Outcome: Postoperative morbidity, 30 day mortality, extent of resection						
Clinical question 2.5.4 In patients with lung cance	er, how should non-pulmonary co-morbidity influence surgical selection?					
Population:	Patients with potentially operable lung cancer					
Intervention:	Selection for surgery					
Comparison:	-					
Outcome:	Peri-operative morbidity & mortality					
Clinical question 2.5.5 Should lung cancer surger	y be offered to octogenarians?					
Population:	Patients (>80 yrs) with lung cancer who are potential candidates for surgery					
Intervention:	Surgery					
Comparison:	-					
Outcome:	Two year survival, five year survival, peri-operative mortality					
<u>Clinical question 2.5.6:</u> In patients with NSCLC wh a) Multifocal tumours b) Synchronous tumours	nat is the optimum surgical approach for?					
Population:	NSCLC patients with multifocal or synchronous tumours					
Intervention:	Surgery					
Comparison:	-					
Outcome:	Two year survival, five year survival, progression-free survival, overall survival					

I STATE THE MOOL						
Population:	atients with NSCLC, what is the optimal lymph node strategy at surgical resection? Jlation: Patients with NSCLC undergoing surgical resection					
Intervention:	Optimal lymph node strategy					
Comparison:	-					
Outcome:	Two year survival, five year survival, progression-free survival, overall survival, accuracy of technique					
Clinical question 2.5.8 In patients with malig	nant pleural effusion associated with lung cancer, what is the best treatment strategy?					
Population: Patients with malignant pleural effusion associated with lung cancer						
Intervention: Interventions to reduce recurrent effusion						
Comparison:	-					
Outcome:	Time to recurrence of effusion					
-	ion be considered in patients with NSCLC, who have treatable isolated brain or adrenal					
	e of presentation?					
Population:	Patients with NSCLC with isolated metastases					
Population: Intervention:	-					
Population: Intervention: Comparison:	Patients with NSCLC with isolated metastases Surgical resection -					
Population: Intervention: Comparison: Outcome:	Patients with NSCLC with isolated metastases Surgical resection - Survival (one year, three year, five year)					
Population: Intervention: Comparison: Outcome: <u>Clinical question 2.5.1</u>	Patients with NSCLC with isolated metastases Surgical resection - Survival (one year, three year, five year)					
Population: Intervention: Comparison: Outcome: <u>Clinical question 2.5.1</u> Should surgical resect	Patients with NSCLC with isolated metastases Surgical resection - Survival (one year, three year, five year)					
Population: Intervention: Comparison: Outcome: <u>Clinical question 2.5.1</u> Should surgical resect (N2) NSCLC?	Patients with NSCLC with isolated metastases Surgical resection - Survival (one year, three year, five year) Survival (one year, three year, five year)					
Population: Intervention: Comparison: Outcome: <u>Clinical question 2.5.1</u> Should surgical resect (N2) NSCLC? Population:	Patients with NSCLC with isolated metastases Surgical resection - Survival (one year, three year, five year) O ion be considered as part of the multimodality treatment of patients with stage IIIa Patients with stage IIIa (N2) NSCLC					
Population: Intervention: Comparison: Outcome: <u>Clinical question 2.5.1</u> Should surgical resect (N2) NSCLC? Population: Intervention:	Patients with NSCLC with isolated metastases Surgical resection - Survival (one year, three year, five year) O ion be considered as part of the multimodality treatment of patients with stage IIIa Patients with stage IIIa (N2) NSCLC					
Population: Intervention: Comparison: Outcome: <u>Clinical question 2.5.1</u> Should surgical resect (N2) NSCLC? Population: Intervention: Comparison: Outcome: <u>Clinical question 2.5.1</u>	Patients with NSCLC with isolated metastases Surgical resection - Survival (one year, three year, five year) O ion be considered as part of the multimodality treatment of patients with stage IIIa Patients with stage IIIa (N2) NSCLC Surgical resection - Surgical resection Surgical resection Surgical resection Surgical resection Surgical resection Survival					
Population: Intervention: Comparison: Outcome: <u>Clinical question 2.5.1</u> Should surgical resect (N2) NSCLC? Population: Intervention: Comparison: Outcome: <u>Clinical question 2.5.1</u>	Patients with NSCLC with isolated metastases Surgical resection - Survival (one year, three year, five year) Survival (one year, three year, five year) Patients with stage IIIa (N2) NSCLC Patients with stage IIIa (N2) NSCLC Surgical resection - Survival 1					
Population: Intervention: Comparison: Outcome: Clinical question 2.5.1 Should surgical resect (N2) NSCLC? Population: Intervention: Comparison: Outcome: Clinical question 2.5.1 In patients with small	Patients with NSCLC with isolated metastases Surgical resection - Survival (one year, three year, five year) O ion be considered as part of the multimodality treatment of patients with stage IIIa Patients with stage IIIa (N2) NSCLC Surgical resection - Surgical resection surgical resection - Surgical resection - Survival					
Population: Intervention: Comparison: Outcome: Clinical question 2.5.1 Should surgical resect (N2) NSCLC? Population: Intervention: Comparison: Outcome: Clinical question 2.5.1 In patients with small Population:	Patients with NSCLC with isolated metastases Surgical resection - Survival (one year, three year, five year) O ion be considered as part of the multimodality treatment of patients with stage IIIa Patients with stage IIIa (N2) NSCLC Surgical resection - Surgical resection surgical resection - Patients with stage IIIa (N2) NSCLC Surgical resection - Survival Patients with stage IIIa (N2) NSCLC Patients with stage IIIa (N2) NSCLC Patients with stage IIIa (N2) NSCLC Patients with SCLC					

Medical Oncology

	LC (excluding pancoast tumours) having curative surgery, how effective is pre-operative otherapy or chemoradiotherapy ?					
Population:	Patients with NSCLC having curative surgery (excluding pancoast tumours)					
Intervention:	Pre-op chemotherapy or pre-op chemotherapy plus RT					
Comparison:	-					
Outcome:	Survival, progression-free survival, time to progression, symptom control, quality of life, toxicity					
-	<u>2</u> Ily advanced NSCLC having radical radiotherapy, is concurrent chemoradiotherapy more ntial chemoradiotherapy?					
Population: Patients with locally advanced NSCLC having radical radiotherapy						
Intervention:	Concurrent chemoradiotherapy					
Comparison:	Sequential chemoradiotherapy					
Outcome:	Survival, progression-free survival, time to progression, symptom control, quality of life, toxicity					
a) Induction (first-linb) Consolidation chePopulation:						
Intervention:	Induction (first-line) chemotherapy; consolidation chemotherapy					
Comparison:	-					
Outcome: Survival, progression-free survival, time to progression, symptom control, qualifie, toxicity						
	<u>4</u> Inced/stage IV NSCLC what is the effectiveness of first-line therapy and is there any Ilar regimens or drugs are more effective or less toxic than others?					
In patients with adva evidence that particu	nced/stage IV NSCLC what is the effectiveness of first-line therapy and is there any					
In patients with adva evidence that particu Population:	Inced/stage IV NSCLC what is the effectiveness of first-line therapy and is there any Ilar regimens or drugs are more effective or less toxic than others?					
In patients with adva evidence that particu Population: Intervention:	Inced/stage IV NSCLC what is the effectiveness of first-line therapy and is there any Ilar regimens or drugs are more effective or less toxic than others? Patients with advanced/stage IV NSCLC					
In patients with adva evidence that particu Population: Intervention: Comparison:	Inced/stage IV NSCLC what is the effectiveness of first-line therapy and is there any Ilar regimens or drugs are more effective or less toxic than others? Patients with advanced/stage IV NSCLC					
In patients with adva evidence that particu Population: Intervention: Comparison: Outcome: <u>Clinical Question 2.6.</u>	Inced/stage IV NSCLC what is the effectiveness of first-line therapy and is there any Ilar regimens or drugs are more effective or less toxic than others? Patients with advanced/stage IV NSCLC First-line chemotherapy - Survival, progression-free survival, time to progression, symptom control, quality or life, toxicity					
In patients with adva evidence that particu Population: Intervention: Comparison: Outcome: <u>Clinical Question 2.6.</u>	Inced/stage IV NSCLC what is the effectiveness of first-line therapy and is there any plan regimens or drugs are more effective or less toxic than others? Patients with advanced/stage IV NSCLC First-line chemotherapy - Survival, progression-free survival, time to progression, symptom control, quality or life, toxicity					
In patients with adva evidence that particu Population: Intervention: Comparison: Outcome: <u>Clinical Question 2.6.</u> In patients with adva Population:	 Inced/stage IV NSCLC what is the effectiveness of first-line therapy and is there any allar regimens or drugs are more effective or less toxic than others? Patients with advanced/stage IV NSCLC First-line chemotherapy - Survival, progression-free survival, time to progression, symptom control, quality or life, toxicity 					
In patients with adva evidence that particu Population: Intervention: Comparison: Outcome: <u>Clinical Question 2.6.</u> In patients with adva	Inced/stage IV NSCLC what is the effectiveness of first-line therapy and is there any allar regimens or drugs are more effective or less toxic than others? Patients with advanced/stage IV NSCLC First-line chemotherapy - Survival, progression-free survival, time to progression, symptom control, quality or life, toxicity 5 inced/stage IV NSCLC is there any evidence for maintenance systemic therapy? Patients with advanced/stage IV NSCLC					

Clinical question 2.6.6 For patients with advar effectiveness of first-lin	nced/stage IV NSCLC aged over 70, and/or with poor performance status, what is the ne therapy?			
Population: Patients with advanced/stage IV NSCLC over 70 and/or with poor perform status				
Intervention:	First-line therapy			
Comparison:	-			
Outcome:	Survival, symptom control, quality of life, toxicity, tumour response			
Clinical question 2.6.7 In patients with advand NSCLC who progress ar	ced/stage IV NSCLC how effective is second and third-line therapy in patients with nd relapse?			
Population:	Patients with advanced / stage IV NSCLC			
Intervention:	Second and third-line systemic therapy (docetaxel, pemetrexed, erlotinib, crizotinib and afatinib)			
Comparison:	-			
Outcome:	Survival, time to progression, tumour response, toxicity (especially neutropenic sepsis/death)			
	hat particular regimens or drugs are more effective or less toxic than others for the imited-stage and extensive-stage small-cell lung cancer (SCLC)?			
Population:	Patients with limited-stage and extensive-stage SCLC			
Intervention:	First-line treatment			
Comparison:	-			
Outcome:	Survival, progression-free survival, time to progression, symptom control, quality of life, toxicity.			
<u>Clinical question 2.6.9</u> In patients with limited	d-stage and extensive-stage SCLC is there any role for maintenance chemotherapy?			
Population:	Patients with limited-stage and extensive-stage SCLC			
Intervention:	Maintenance chemotherapy			
Comparison:	-			
Outcome:	Survival, progression-free survival, time to progression, symptom control, quality of life, toxicity			
<u>Clinical question 2.6.10</u> How effective is second) d-line systemic therapy in patients with SCLC who progress and relapse?			
Population:	Patients with SCLC who progress and relapse			
Intervention:	Second-line systemic therapy			
Comparison:	-			
Outcome: Survival, progression-free survival, time to progression, symptom control, qua				

Radiation Oncology

	cell lung cancer (NSCLC) early stage disease (T1-T2 N0 M0) who are unfit ctiveness of stereotactic radiotherapy, standard radical radiotherapy and				
Population:	In patients with Stage I, II who are unfit for surgery				
Intervention: Stereotactic RT, standard radical radiotherapy, and radiofrequency ablation					
Comparison:					
Outcome:	Itcome: Median survival, two year survival, five year survival, progression-free survival, overall survival, response rate, declining lung function, pneumonitis, pulmonary fibrosis, quality of life				
effectiveness of the followin a) New technology (IMRT/4 b) Altered radiation fraction c) Dose	DCT- breathing adapted radiotherapy) nation schedules (Hyper and/or accelerated fractionation)				
Population:	Patients with stage I-III NSCLC undergoing radical EBRT (excluding those suitable for SABR)				
a) New technology (IMRT/4DCT- breathing adapted radiotherapy) b) Altered radiation fractionation schedules (Hyper and/or accelerated fractionation) c) Dose					
Comparison:	3DCRT; Chemotherapy and 3DCRT				
Outcome:	Survival and disease free progression, toxicity (oesophagitis, pneumonitis; bone marrow suppression)				
a) What are the most usefu	CLC undergoing radical three-dimensional conformal radiotherapy (3DCRT): I predictors of lung and oesophageal toxicity? I measures to reduce toxicity: clinical/technical?				
Population:	Patients with stage III NSCLC undergoing radical 3DCRT				
Intervention:	Radical therapy 3DCRT				
Comparison:	Radical radiotherapy and chemotherapy				
Outcome:	Reduce morbidity and side effects, toxicity (radiation pneumonitis, oesophagitis and pulmonary fibrosis)				
Clinical question 2.7.4 In patients with NSCLC post adjuvant RT? a) pN2 R0 b) any pN, R1, R2 resection	surgery which groups should receive postoperative radiotherapy (PORT) or				
Population:	Patients with NSCLC post surgery				
Intervention:	RT post surgery				
Comparison:	No RT				
Outcome:	Survival and disease free progression				

Clinical question 2.7.5In patients with small-cell lung cancer (SCLC), what is the evidence supporting the role of radiotherapy(including technical parameters)a) Limited-stage prophylactic cranial irradiation (PCI)b) Limited-stage thoracic radiotherapyc) Extensive-stage PCId) Extensive-stage thoracic radiotherapy			
Population:	Patients with limited-stage and extensive-stage SCLC		
Intervention: Prophylactic cranial irradiation, thoracic radiotherapy			
Comparison: No prophylactic cranial irradiation, no thoracic radiotherapy			
Outcome: Survival, progression-free survival, response rate			

Palliative Care

Clinical question 2.8.1 Does the involvement of specialist palliative care result in better quality of life for patient or family, symptom control, or improved cost effectiveness compared with standard care alone (no involvement from specialist palliative care)?				
Population:	opulation: Patients with cancer (or specifically, lung cancer)			
Intervention:	Specialist Palliative care services			
Comparison:	Usual care (without palliative care)			
Outcome: Symptom control, quality of life, cost-effectiveness, prognosis				
<u>Clinical question 2.8.2</u> Who should comprise the p	palliative care multidisciplinary team?			
Population:	Patients with cancer (or specifically, lung cancer)			
Intervention:	Multidisciplinary team care			
Comparison:	omparison: Usual care			
Outcome:	Symptom control, quality of life, cost-effectiveness, prognosis			

Appendix 3: Summary of the tools to assist in the implementation of this National Clinical Guideline

NCCP. National Clinical Guidelines for Cancer – Methodology Manual. National Cancer Control Programme, 2014.

NCCP Website: Information for Health Professionals

NCCP Website: Patient Information

Health Information and Quality Authority (HIQA). National Standards for Safer Better Healthcare

Centre for Evidence Based Medicine

Improving Health: Changing Behaviour - NHS Health Trainer Handbook

UCL Centre for Behaviour Change

Michie, S; Atkins, L; West, R; (2014) The Behaviour Change Wheel: A Guide to Designing Interventions. (1st ed.). Silverback Publishing: London.

Craig P, Dieppe P, Macintyre S, Michie S, Nazareth I, Petticrew M. (2008). Developing and evaluating complex interventions: the new Medical Research Council guidance. BMJ; 337.

Medical Research Council. (2008). Developing and evaluating complex interventions: new guidance. Available from: <u>www.mrc.ac.uk/complexinterventionsguidance</u>.

Guide for health professionals

30 Second Stop Smoking Advice, NCCP

Patient information booklets/leaflets

Rapid Access Lung Clinic - A Guide for Patients, NCCP

Quit smoking to reduce your cancer risk - NCCP cancer prevention factsheet, NCCP

Appendix 4: Literature review protocol

HSE Library Services NCCP Guideline Development

www.hselibrary.ie

SYSTEMATIC LITERATURE REVIEW PROTOCOL

Literature searches to answer clinical questions identified by the relevant tumour group will be conducted using the following procedure. Questions should only be submitted if they have not been adequately answered in the guidelines adopted by the tumour group, or where guidelines need to be updated. Guidelines should be identified in consultation with library services.

Tumour Group	1	PICO(T)		Analyse the clinical question using PICO(T) and complete a Clinical Query Request form. See below Annex 1: Clinical Query Request.
Tumour Group or Library Services	2	Question Category		Assign a question category, if appropriate: Therapy/Intervention
Library Services	3	Literature Search		Conduct searches of the following bibliographic databases in the order specified below using keywords implicit in the PICO(T) strategy and any identified subject headings:
		Cochrane	3.1	Cochrane Library Comprising: the Cochrane Database of Systematic Reviews; the Cochrane Central Register of Controlled Trials (Central); the Database of Abstracts of Reviews of Effects; the Health Technology Assessment Database; the NHS Economic Evaluation Database. Use MeSH and keyword searches to identify systematic reviews and other relevant studies.
		Point-of-Care	3.2	Point-of-Care Reference Tools One or more of the following point-of-care reference tools: BMJ Best Practice; DynaMed; UpToDate.
		Medline	3.3	Medline Use MeSH and keyword searches. Limit results using the 'Human' search filter. Unless otherwise specified by the tumour group or warranted by the specific clinical question, limit results to studies from the previous five years. Where appropriate, limit intervention questions according to the following priority: Medline clinical queries; Cochrane systematic reviews; other systematic reviews or meta-analyses; RCTs; systematic reviews of cohort or cross-sectional studies; cohort or cross-sectional studies; general Medline or other sources. Where appropriate, limit diagnosis, prognosis or aetiology questions according to the following priority: Medline clinical queries; systematic reviews of cohort or cross-sectional studies; cohort or cross-sectional studies; general Medline or other sources.
		Embase	3.4	Embase Repeat the Medline search strategy above using Embase, if available.
		Other Databases	3.5	Other Bibliographic Databases Repeat the Medline search strategy above using the Cumulative Index to Nursing and Allied Health Literature and/or PsycINFO, as appropriate.
		Other Sources	3.6	Other Sources Use any other sources for background or additional information, as appropriate. Other sources may include: PubMed, particularly for in-process or ahead-of-print citations; quality-assured, subject-specific Internet resources; clinical reference books; patient information materials; etc.

		Trial Registers	3.7	Trial Registers When a relevant trial is identified through searching the bibliographic databases, a search of trial registers should be carried out to identify any related trials which have been completed but whose findings have not been published or made available. The tumour group should be alerted to the presence of these unpublished trials. The following sources may be included:	
			3.7.1	ClinicalTrials.gov: http://clinicaltrials.gov/	
			3.7.2	Cochrane Central Register of Controlled Trials (Central): <u>http://www.</u> thecochranelibrary.com/	
			3.7.3	EU Clinical Trials Register: https://www.clinicaltrialsregister.eu/	
			3.7.4	International Prospective Register of Systematic Reviews (Prospero): <u>http://www.</u> crd.york.ac.uk/prospero/search.asp	
			3.7.5	WHO International Clinical Trials Registry: http://apps.who.int/trialsearch/	
			3.8	For questions relating to economic evaluations, use the SIGN economic studies filter for Medline as a basis for the search strategy: <u>http://www.sign.ac.uk/methodology/</u> <u>filters.html#econ</u> . The following source may also be consulted, if available: <u>HEED: Health Economic Evaluations Database: <u>http://onlinelibrary.wiley.com/</u> <u>book/10.1002/9780470510933</u>.</u>	
Library Services	4	Reference Management		Retain an electronic record of the search strategy and all search results using the Zotero reference management utility.	
Library Services	5	Search Results		 Respond to the tumour group using the Clinical Query Response form to include: a copy of the search strategy bibliographic details of all search results identified optionally, a note of studies that seem to the librarian to be of particular relevance to the clinical question See below Annex 2: Clinical Question Response. 	
Library Services	6	Retracted Publications	6.1	Set up an alert to review results lists returned to the tumour group to rapidly capture any articles that are subsequently retracted or withdrawn, and notify the tumour group accordingly.	
Tumour Group/ Library Services		Retracted Publications	6.2	Review all articles included in recommendations of the completed guideline to confirm that they have not been subsequently retracted or withdrawn.	
Library Services	7	Summary of Search Strategy		A summary of the search strategy is included as an addendum to the completed guideline. Complete the Clinical Question: Summary of Search Strategy form and return to the tumour group. See below Annex 3: Clinical Question: Summary of Search Strategy.	
Library Services	8	[Pre-External Review] Update of Literature Search		Once internal review of the guideline has been completed, literature searches for all clinical questions should be updated to capture articles published in the interim between the original literature search and the final draft of the guideline. Updated literature searches should be conducted prior to submission of the guideline for external review. Respond to the tumour group as previously using the Clinical Query Response form to include:	

ANNEX 1 CLINICAL QUESTION REQUEST TO LIBRARY

Your Contact Details						
Name						
Job Title						
Work Address						
Telephone						
Email						
Employee Number						
Please state your clinical que	estion					
and list any relevant keyw	ords					
or (optional) enter keywor	ds under the following h					
Deputation (Droblem		PICO				
Population/Problem						
Intervention/Indicator						
Comparator/Control						
Outcome						
Is your question specific to a	ny of the categories belo	ow?				
GENDE	 ER	AGE GROUP	DATE OF PUBLICATION			
Male 🗖 Female 🗖		Infant (0 – 23 months) □ Child (2 – 12 years) □ Adolescent (13 – 18 years) □ Adult (19 – 65 years) □ Aged (> 65 years) □	Current year only 🗖 0 – 5 years 🗖 > 5 years 🗖			
	(Question Type	•			
Therapy/Intervention 🗖						
Aetiology/Risk Factors 🗖	Aetiology/Risk Factors 🗖					
Diagnosis 🗖						
Prognosis/Prediction 🗖						
Frequency/Rate 🗖						
Phenomena 🗖						
Other 🗖						
Additional Information						

ANNEX 2 CLINICAL QUESTION RESPONSE FROM LIBRARY

Dear _____,

Thank you for your email. Please see attached in response to your clinical query and, below, details of the search strategy applied to your question. If you wish to source any of the references contained in these results, or to search further, please do not hesitate to contact us.

Best wishes,

[ATTACH CLINICAL QUESTION REQUEST HERE]

Search Strategy			
Primary Database(s) Searched			
Search Strategy			
Other/Secondary Resources Searched			
Comments			
	Contact		
Your Library Staff Contact			
Date			

ANNEX 3 CLINICAL QUESTION: SUMMARY OF SEARCH STRATEGY

Clinical Question						
	PICO					
Dopulation (Droblom	PICO					
Population/Problem						
Intervention/Indicator						
Comparator/Control						
Outcome						
Is your question specific to any	of the categories below?					
GENDER	AGE GROUP	DATE OF PUBLICATION				
Male 🗖 Female 🗖	Infant (0 – 23 months) □ Child (2 – 12 years) □ Adolescent (13 – 18 years) □ Adult (19 – 65 years) □ Aged (> 65 years) □	Current year only 🗖 0 – 5 years 🗖 > 5 years 🗖				
	Question Ty	be				
Therapy/Intervention 🗖						
Aetiology/Risk Factors 🗖						
Diagnosis 🗖						
Prognosis/Prediction						
Frequency/Rate 🗖						
Phenomena 🗖						
Other 🗖						
	Search Strate	еу				
Primary Database(s) Searched						
Search Strategy	[Copy of base Medline and/or PubMed search strategy HERE. Include subject headings and search hits].					
Other/Secondary Resources Searched						
Search Strategy: Other Resources	[Copy of other search strategies HERE. Include subject headings and search hits].					
Comments	[Short paragraph describing search].					
Date						

* Based in part on "Figure 10: Systematic Literature Review" of SIGN 50: A Guideline Developer's Handbook. - Scottish Intercollegiate Guidelines Network (2011). SIGN 50: A Guideline Developer's Handbook. Revised ed. Edinburgh: Scottish Intercollegiate Guidelines Network.

Protocol designed by the HSE/hospital librarians in conjunction with the NCCP.

Appendix 5: Details of consultation process

This table summarises those invited to consult on the guideline.

Clinical leaders and healthcare managers	National Clinical Leads group HSE Clinical Programme in Surgery HSE Clinical Programme in Radiology HSE Clinical Programme in Palliative Care HSE Clinical Programme in Medicines management & pharmacological interventions HSE Clinical Programme in Obstetrics and Gynaecology HSE Clinical Programmes in Renal Failure HSE Clinical Programme in Primary Care CEOs of the Hospital Groups CEOs of the designated Cancer Centres CEO/managers of the Cancer Network Hospitals		
National groups, organisations, faculties & committees	Faculty of Surgery, RCSI		
Patient support and advocacy groups	HSE Patient Forum Irish Cancer Society Cancer Care West Marie Keating Foundation Gary Kelly Cancer Support Centre Bray Cancer Support Centre All Ireland Institute of Hospice and Palliative Care The Irish Hospice Foundation The Irish Association for Palliative Care ASH Ireland Irish Lung Foundation The Irish Lung Cancer Nurses Group The Irish Thoracic Society		
International Expert Review:	Ian Woolhouse Ms Ailsa Stein	Consultant Respiratory Medicine, Queen Elizabeth Hospital, Birmingham Programme Manager, Scottish Intercolllegiate Guideline Network	
	Professor Giorgio Scagliotti Professor Massimo Di Maio	Professor of Respiratory Medicine at the University of Torino, School of Medicine S. Luigi Gonzaga. Associate Professor of Medical Oncology University of Turin, Department of Oncology, (Italy)	

Appendix 6: Budget Impact Assessment

Part A: Economic Impact Report

Key message

This review of the literature on the economic evaluation of the diagnosis, staging and treatment of lung cancer and the budget impact analysis highlights potential economic consequences of the clinical guideline recommendations.

Economic literature review results

The Guideline Development Group (GDG) undertook a literature search for evidence of clinical- and costeffectiveness, cost and resource impact, including primary (research studies) and secondary (reviews) sources. The literature sources searched are specified in the literature search strategy and include relevant resources, such as trial/guideline registries and relevant citation databases. The economic literature review was undertaken using the same search terms as derived from the clinical literature review (available as a separate document) but with an economic filter applied. The results of this search were then refined by focusing on studies carried out in countries where the population, costs and treatment were considered similar to the Irish setting. All papers included (Figure 9) were subject to appraisal using the SIGN 'Economic Evaluations: Methodology Checklist 6' by a health economist and are deemed of acceptable quality unless otherwise stated.

Budget impact of this National Clinical Guideline

For recommendations which affect resource requirements, the budget impact was calculated. Additional resources, where required, will be sought through the HSE service planning process.

The burden of cancer is growing, and the disease is becoming a major economic expenditure for all developed countries. In 2008, the worldwide cost of cancer due to premature death and disability (not including direct medical costs) was estimated to be US\$895 billion. This is not simply due to an increase in absolute numbers, but also the rate of increase of expenditure on cancer. Several drivers of cost, such as over-use, rapid expansion, and shortening life cycles of cancer technologies (such as medicines and imaging modalities), and the lack of suitable clinical research and integrated health economic studies, have converged with more defensive medical practice, a less informed regulatory system and a lack of evidence-based sociopolitical debate. (Sullivan et al., 2011)

"The cancer profession and industry should take responsibility and not accept a substandard evidencebase and an ethos of very small benefit at whatever cost." (Sullivan et al., 2011) Sullivan et al. (2011) believe that value and affordable cancer care can be introduced into the cancer policy lexicon without detracting from quality, and that the management tools, evidence, and methods are available to affect this transformation across all developed countries.

A population-based cost analysis (Luengo-Fernandez et al., 2013) illustrated the economic burden of cancer on the European Union (EU). In 2009, cancer was estimated to have cost the EU €126 billion, with healthcare costs accounting for €51 billion (40%). In Ireland, inpatient care costs were estimated to account for €417 million of cancer-related healthcare costs out of a total of €619 million. Drug expenditure accounted for a further €127 million, while primary, outpatient and emergency care were estimated at €32 million, €30 million and €13 million, respectively. Across the EU, lung cancer had the highest economic cost (€18.8 billion) when compared to breast (€15 billion), colorectal (€13.1 billion) and prostate (€8.43 billion) cancer. The cost of lung cancer related productivity losses and informal care were estimated at €9.92 billion and €3.82 billion, respectively (Luengo-Fernandez et al., 2013). Irish healthcare costs for the treatment of lung cancer were estimated to cost €13 per person (Luengo-Fernandez et al., 2013). In comparison the European average cost per person for the treatment of lung cancer was

estimated to be \in 8. With cancer incidence expected to increase by 99% by 2040 (NCRI, 2014), there could be a significant increase seen in healthcare costs per person in Ireland.

Methods

The search strategy for economic literature is based on the search used in the clinical literature review, with the addition of a SIGN economic studies filter for Medline (Table 11. Economic literature review protocol) including the former Database of Abstracts of Reviews of Effects, NHS Economic Evaluation Database (EED), Health Technology Assessment Database, the Cochrane Library, and Google Scholar.

The estimated costs per quality adjusted life year (QALY) or life years gained (LYG) given in the following summaries are those reported within each study for the given year and national currency. These cost-effectiveness ratios have been complemented in brackets by euro estimates to correct for the exchange rate, purchasing power parity (PPP) between countries and health inflation to 2014 costs as per the Health Information and Quality Authority's Economic Evaluation Guidelines (HIQA, 2014).

The following summaries report the conclusions regarding cost-effectiveness made by the authors of the reviewed literature. It is important to recognise that those conclusions are particular to the health systems in the countries in which the studies are conducted in and reflect medical practice and healthcare costs at the time the studies were undertaken. These practices and costs can differ significantly between countries, even between nations of comparable per capita income. Clearly current medical practice in Ireland may differ from the context of the original studies and care must be taken not to over-interpret the relevance of such evidence for Ireland. More specifically, it is important to note that cost-effectiveness analysis (CEA) results can be highly contingent on what particular practices are compared and in what way. The conclusion that a given intervention is cost-effective in one setting may not hold true for another if the baseline standard of care against which that intervention is assessed differs between the two settings.

Another reason for conclusions on cost-effectiveness to differ between countries relates to the prevailing cost-effectiveness threshold. While Ireland has no explicit cost-effectiveness threshold for non-drug interventions, cost-effectiveness ratios falling within the region of €45,000/QALY are conventionally considered cost-effective in Ireland. As this threshold differs from the thresholds typically used in other countries the statements of cost-effectiveness made in other contexts are not necessarily applicable to Ireland. In all cases possible the relevant Incremental Cost Effectiveness Ratios (ICERs) have been reported, thereby permitting comparison to the Irish threshold rather than relying on the original conclusion of each study relative to any national norms of cost-effectiveness in each case. It should be noted that there are constraints regarding cost-utility and heterogeneity of practice.

The reported costs and cost-effectiveness ratios have been inflated to 2014 euro values and adjusted for purchasing power parity (PPP). Nevertheless, it is also important to remember that there may still be a number of other factors which mean that cost-effectiveness ratios from other countries are not necessarily directly applicable to the Irish setting. For example, Ireland's discount rate is higher than that applied in the UK, so many interventions assessed in the UK would have less favourable ratios if the Irish discount rate was applied. Similarly, some analyses are conducted from the societal perspective and may account for more costs and benefits than are considered in Irish cost-effectiveness analyses (CEAs), which only account for costs to the health sector and do not typically include non-health benefits. Accordingly, the euro-adjusted ratios reported here should only be considered broadly indicative of the level of cost-effectiveness rather than precisely adjusted estimates for the Irish health system.

Finally, it should be noted that there is very little available literature on the cost-effectiveness of the interventions considered here. In most cases there is only one study per indication. This presents a considerable challenge in reaching conclusions regarding the likely cost-effectiveness of the interventions

in question. It would be preferable to have a range of studies to compare in order to better judge evidence quality and to provide insight into the effects of methodological and empirical factors from each study on the conclusions reached. However, the absence of a rich evidence base means that health economic evidence should be considered tentatively and the findings should only be considered broadly indicative of what might apply in Ireland currently.

Medical Oncology cost effectiveness analysis

The HSE has an approved robust reimbursement methodology in place to determine if medicines are reimbursed. This is underpinned by legislation. In light of that the budget impact and pharmacoeconomic assessment for this guideline defers to that process.

The existing reimbursement process for new cancer drugs or new indications for existing cancer drugs is: The Department of Health agreed a pricing and reimbursement framework agreement with the Pharmaceutical industry, the 2012 IPHA agreement. That has been further enhanced by the enactment and commencement of the Health (Pricing and Supply of Medical Goods) Act 2013, and the 2016 IPHA agreement.

In the agreement, the Department of Health agreed processes with the pharmaceutical industry with clearly documented procedures and timelines for the assessment of new medicines (IPHA agreement) in as timely a fashion as possible. The Health Act places statutory responsibilities on the HSE in relation to pricing and reimbursement of medicines.

The HSE, in any considerations around pricing and reimbursement is required to follow the procedures outlined in the agreement and the Act.

In accordance with those procedures, the <u>National Centre for Pharmacoeconomics (NCPE)</u> conducts Health Technology Assessments (HTA) which provide detailed information to the HSE on the potential budget impacts of the medicines and considers whether the medicines are cost effective at the current prices offered to the HSE.

The respective pharmaceutical companies submit dossiers to the NCPE which are examined in great detail in as short timeframes as possible. NCPE complete reports on the dossiers for the HSE and publishes its findings.

The NCPE reports are important inputs to assist decision making and are required to assist the HSE in ensuring that the most appropriate decisions are made.

The National Cancer Control Programme Technology Review Committee reviews proposals received from industry or expert groups in Ireland for funding of new cancer drugs, or expanded indications for existing cancer drugs or related predictive laboratory tests. Following appropriate deliberations, the Committee makes a recommendation on the introduction of the individual drug. When this is positive, the recommendation is then brought forward to the HSE Drugs Group for final decisions regarding funding.

The HSE assessment process is intended to arrive at decisions on the funding of each of the drugs that are clinically appropriate, fair, consistent and sustainable. The HSE engages with each of the pharmaceutical companies to discuss the issues raised in the NCPE reports.

The Department of Health approves the annual HSE Service Plan which contains financial provisions for new medicines which the HSE is required to manage to the best of its ability so as to provide access to as wide a range of new medicines as possible in a clinically appropriate, fair, consistent and sustainable manner.

Figure 9. Economic literature review results breakdown

*Inclusion criteria

Costly utility model Applicable to the Irish healthcare system Applicable to patient population English language Clinically relevant outcomes Relevant to guideline recommendations

*Exclusion criteria

Not a cost effectiveness study Not in English language Methodological or quality issues Not applicable to Irish healthcare system Applicable to patient population Not relevant to guideline recommendations

134 | Diagnosis, staging and treatment of patients with lung cancer

ID	Search
1	Economics/
2	"costs and cost analysis"/
3	Cost allocation
4	Cost-benefit analysis/
5	Cost control/
6	Cost savings/
7	Cost of illness/
8	Cost sharing/
9	"deductibles and coinsurance"/
10	Medical savings accounts/
11	Health care costs/
12	Direct service costs/
13	Drug costs/
14	Employer health costs/
15	Hospital costs/
16	Health expenditures/
17	Capital expenditures/
18	Value of life/
19	Exp economics, hospital/
20	Exp economics, medical/
21	Economics, nursing/
22	Economics, pharmaceutical/
23	Exp "fees and changes"/
24	Exp budgets/
25	(low adj cost).mp.
26	(high adj cost).mp.
27	(health?care adj cost\$).mp.
28	(fiscal or funding or financial or finance).tw.
29	(cost adj estimate\$).mp.
30	(cost adj variable).mp.
31	(unit adj cost\$).mp.
32	(economic\$ or pharmacoeconomic\$ or price\$ or pricing).tw.
33	Or/1-32

Section I Economic literature appraisals

Radiology

Cost-effectiveness of positron emission tomography in staging of non-small cell lung cancer and management of solitary pulmonary nodules

Cao et al. (2012) presents a systematic review of the use of positron emission tomography (PET) in the staging of non-small cell lung cancer (NSCLC) and the management of solitary pulmonary nodules. Their overall conclusion is that although the evidence appears mixed, it seems PET is either cost-saving or cost-effective relative to other intervention strategies.

The analysis searched four databases (MEDLINE, EMBASE, NHS EED, and the Cochrane Health Technology Assessment Database) for literature on the cost-effectiveness of PET imaging. The authors assessed the identified studies against health economic analysis quality checklist and only included those studies with high scores in the primary analysis. In all, they identified 18 studies for review. Data including costs and effects were extracted from the studies and assessed. They also extracted the principal conclusion from each analysis. The review goes on to consider a number of other studies that are apparently considered relevant in the literature, but were either excluded due to low quality scores or not captured by the literature search.

The review notes that all of the analyses used decision analytic modelling to reach their findings. The review notes that results of the analyses are therefore contingent on the modelling assumptions made. It notes the heterogeneity of key assumptions regarding the test performance. The review draws particular attention to the number of studies interpreting the cost-effectiveness results incorrectly, primarily due to inappropriate comparisons between strategies. To correct for this they present revised interpretations of the cost-effectiveness ratios based on the reported costs and effects. It is important to note that there is great variety in the strategies compared, with different combinations of computed tomography and PET being considered. Despite this, the results show that strategies featuring PET are generally either cost-saving or have ICERs that are likely to be well within acceptable limits of cost-effectiveness. When the review considers the finding of other studies not captured by the search strategy, these other studies generally support the conclusion that PET imaging is either cost-saving or cost-effective.

The review process is well described and the abstracting of data and correcting of erroneously interpreted cost-effectiveness ratios are all strengths of this review. However, despite implementing a clearly described search strategy, this analysis also goes on to review a large number of studies that were not captured by the search string, which seems counter to the purpose of the systematic review. A further note of caution is that while the review indicates that PET imaging can be cost-saving or cost-effective, the results also show that PET imaging is not necessarily always cost-effective, as it depends on what particular combination of imaging is assessed. An additional caveat is that although the review by Cao et al. (2012) itself is relatively recent, the studies considered within the review date back to between 1996 and 2007. So the relevance of the findings to current clinical practice and service provision costs may now be limited. In conclusion, the overall finding from this review should be interpreted as a heavily qualified endorsement of PET imaging as likely to be a rational strategy.

Cost-effectiveness of initial diagnostic strategy for pulmonary nodules presenting to thoracic surgeons

Deppen et al. (2014) present a cost-effectiveness model to examine the cost-effectiveness of computer assisted navigational bronchoscopy (NB) as an alternative to positron emission tomography (PET) as a diagnostic tool for patients with lung nodules. Their results suggest that NB is a cost-effective alternative to PET, although the differences in costs and effects appear relatively small.

The analysis uses a model to compare four diagnostic strategies: the current strategy of PET imaging; NB; computed tomogaphy guided fine needle aspiration (CT-FNA); and video-assisted thoracoscopic surgical biopsy (VATS). VATS is used as follow-up diagnostic procedure in all strategies in which VATS is not the first test when the initial test fails to yield a diagnostic result. The principal analysis is conducted for nodules of between 1.5 and 2 cm in size and has a suspected lung cancer risk of 65% according to standard risk models in a 60 year old man with a history of smoking.

The results of the analysis find NB, CT-FNA and VATS all to be more costly and more effective than PET. NB and CT-FNA are found to be effectively equal in terms of costs and effects. VATS is dominated by NB and CT-FNA. The cost-effectiveness ratio of NB relative to PET is reported as \$4,600/QALY (€3,945/QALY in 2014 in inflation and PPP adjusted euro). Accordingly, NB would be interpreted as a highly cost-effective intervention as its ICER is well within commonly applied thresholds, such as the €45,000/QALY threshold applied in Ireland. The NB strategy only provides 0.05 more QALYs than the baseline PET strategy and the increase in costs of approximately \$200 is less than 2% higher.

The analysis is reasonably well described, but there is more detail in the model description and results that would have been beneficial. In particular, the analysis does not present many of the intermediary estimates such as the numbers of cases detected or numbers of false positives from the model, accordingly, it is not clear by what means the improved diagnostic performance leads to improved health outcomes. The analysis also did not apply discounting, which would have been appropriate in this case. While it seems unlikely that the application of discounting would result in the primary ICER estimate becoming greater than commonly applied cost-effectiveness thresholds, the failure to apply discounting is a concern as it signals methodological weakness. Similarly, the ICERs for dominated strategies are not reported correctly. Finally, the specific analysis to a given nodule size and estimated cancer risk means that it is unclear how the results presented here would apply to other cases more generally. Overall, while this study indicates NB is a cost-effective alternative to PET more evidence from other studies would be desirable.

Clinical effectiveness and cost-effectivenss of the diagnostic staging strategy of EBUS-TBNA combined with EUS-FNA compared with standard surgical staging techniques

Sharples et al. (2012) present a cost-effectiveness analysis of alternative diagnostic procedures for NSCLC as part of a broader clinical comparison of combined endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) and endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) as an alternative to conventional surgical diagnostic technique of mediastinoscopy. They find combined EUS-FNA EBUS-TBNA (endosonography) to have lower expected costs and higher expected effectiveness than mediastinoscopy, but do not find either of these results to be significantly different from zero.

The analysis is based on a randomised control trial (RCT) of the two approaches at four sites which followed patients for six months. The results of the RCT are combined with quality of life data gathered within the study in a Bayesian cost-effectiveness analysis of the data that permits an examination of uncertainty in the findings.

The analysis notes that the principal differences in costs arise due to both differences in the costs of the diagnostic procedure and differences in number of thoracotomies performed. The diagnostic costs were higher in the endosonography group, but this was partly offset by lower costs for thoracotomies. The resulting expected cost-effectiveness estimates find that endosonography dominates mediastinoscopy, but that the credible intervals for both incremental costs and effects estimates both cross zero.

This is a high quality study that is based on RCT evidence and directly elicited quality of life measures. The analysis is well documented and the results are clearly reported. The insignificant difference in costs and effects means it is difficult to strongly conclude in favour of endosonography. However, the conventional

approach within cost-effectiveness is to base recommendations on expected values, therefore on this basis endosonography is the preferred strategy. Nevertheless, the differences in expected costs and QALYs between the two strategies are relatively small.

Relevance to the guideline recommendation

The above papers discuss the cost-effectiveness of non-invasive diagnostic techniques that are addressed in clinical questions 2.2.1, 2.2.2, 2.3.1 and 2.3.2.

The evidence from a systematic review suggests that PET imaging is either cost-saving or cost-effective relative to other interventional strategies. However, the same study notes that PET is not always found to be cost-effective.

This is indirectly relevant to recommendation 2.2.1.3 which supports the use of PET-CT for nodal staging in patients with potentially resectable NSCLC prior to more invasive staging.

The evidence also suggests navigational bronchoscopy, CT-FNA and VATS are all more cost-effective than PET, although there are several methodological issues highlighted with the internal validity of this analysis and further research is necessary. This is relevant to recommendations 2.2.1.4 and 2.2.2.1 which discuss the clinical effectiveness of PET-CT as part of the clinical pathway.

EUS-FNA combined with EBUS-TBNA is reported to have higher sensitivity and negative predictive probability, and so is expected to be slightly more effective and less expensive than using surgical staging alone. This paper is particularly relevant to recommendations 2.2.2.1, 2.3.1.3 and 2.3.2.1. These recommendations are current practice and should not have any resource implications.

The implementation plan (Appendix 7: Implementation Plan) outlines access to PET-CT as a possible barrier to successful implementation. If PET-CT is performed at hospitals that are not cancer centres then such hospitals will require the appropriate software to allow for results to be available for review at MDM in cancer centres.

Surgery

Cost associated with lobectomy performed thoracoscopically or via thoracotomy

Burfeind Jr et al. (2010) conduct a cost-utility analysis comparing the two surgical methods for lobectomy. The conventional procedure is to use posterolateral thoracotomy (PLT), while the alternative is using thoracoscopy (TL). Their principal finding is that TL results in no less QALYs than PLT, but has statistically significantly reduced costs. Accordingly, the authors conclude that TL is a cost-saving procedure relative to standard PLT.

The analysis is primarily an observational analysis of 113 patients treated with either TL or PLT at a US medical centre between 2002 and 2004. The authors record the costs of surgery, including pre- and post-operative care for up to 30 days following the operation. The costs recorded are those incurred by the healthcare provider and relate to the direct use of resources. Patients completed quality of life questionnaires at four time points: preoperative, and 3, 6 and 12 month postoperatively to determine the differences in health related quality of life over a year following the operation. The procedures are considered equivalent in terms of overall survival from cancer, so there are no long term differences assumed for the costs of each intervention after the 30 days of observation. Discounting of costs and health effects was not applied because the differences in costs and effects of the procedures were only assessed over a short time span. Similarly, no adjustment is made for inflation. The analysis does not contain a sensitivity analysis as it is primarily an observational rather than a modelling study. It does clearly report error bounds on all the principal outcome measures reported.

The authors find no statistically significant difference in QALYs between the two procedures, hence they conclude them to be equally effective. They find the mean costs of PLT and TL to be \$12,119 and \$10,084 respectively ($\leq 17,700$ and $\leq 14,700$ respectively in 2014 in inflation and PPP adjusted euro). They find the difference between these two costs to be statistically significant, and so conclude that TL is cost-saving relative to PLT. The difference in costs between the interventions is largely attributed to lower preoperative costs and reduced length of stay for the less invasive TL procedure.

Overall this analysis appears well conducted and the conclusion that TL is cost-saving relative to PLT is credible. Nevertheless, there are some important limitations to this study that need to be recognised. The study does not feature randomisation between the two interventions. While this may raise concerns regarding the validity of the findings, it should also be noted that the study has demonstrated no difference in a range of patient characteristics between the intervention groups. More relevant to issues of external validity is the fact that the data for this study date from 2002 to 2004 and originate in the US, so the findings might not necessarily be representative of current care in Ireland. Notably, the quality of life measures employed failed to find a difference between the techniques, despite the finding of previous authors that TL is associated with reduced postoperative pain. This may be because the quality of life measure lacked sensitivity or was not employed at the relevant time point. However, this is not of great importance as it does not alter the conclusion that TL is a rational alternative to PLT given the evidence presented from this case.

Relevance to the guideline recommendations

The evidence suggests that thoracoscopy is significantly less expensive than posterolateral thoracotomy concluding that a saving of approximately \leq 3,000 per patient from pre-operative evaluation to 30 days postoperatively.

This is relevant to surgery questions 2.5.2 where the guideline development group recommend that in patients with clinical stage I (NO) non-small cell lung cancer (NSCLC), video-assisted thoracic surgery (thoracoscopy) should be considered as an alternative to thoracotomy for anatomic pulmonary resection. This is particularly relevant as the majority of patients in the Burfeind paper were pathological stage I lung cancer. The implementation plan (Appendix 7: Implementation Plan) states that the recommendation is current practice and there are no resource implications.

Medical Oncology

Economic evaluation of first-line and maintenance treatments for advanced non-small cell lung cancer Chouaïd et al. (2014) present a systematic review of cost-effectiveness analyses of treatments for nonsmall cell lung cancer (NSCLC). The overall conclusion reached by the authors is that the available evidence shows that most modern treatments recommended or recently developed tend to have costeffectiveness ratios that are in excess of what would currently be considered cost-effective.

This analysis systematically reviewed four databases (MEDLINE, NIHR Centre for Reviews and Dissemination, NHS HEED and PubMed). The search was run to assess the cost-effectiveness of first-line and maintenance therapy for NSCLC. A large number of treatment and treatment combinations are examined in the review. These include, cisplatin-pemetrexed, cisplatin-gemcitabine, carboplatin-paclitaxel, bevacizumab, cisplatin-vinorelbine, cisplatin-docetaxel, gemcitabine-vinorelbine, erlotinib, gefitinib, afatinib and crizotinib. While the review is systematically described, the data extraction and reporting are not. The results of the review are presented within the text rather than in tables. It broadly considers interventions with ICERs below \$50,000/QALY (€46,200/QALY adjusted for inflation and PPP) to be cost-effective.

The report considers the reported costs and cost-effectiveness of the various treatment strategies, including alternative treatment combination used either in unselected patients or as targeted therapies. While the reporting is not consistent across the studies and a large number of ICERs are reported, most are in the hundreds of thousands of Euro or Dollars per QALY gained. Accordingly, these ICERs generally indicate that most of the therapies reviewed are not cost-effective.

Overall this review does not appear to be of high quality. The unstructured reporting of results for many treatment combinations and patient subgroups does not present the relevant evidence in an accessible format. The lack of focus on any one particular therapy or patient subgroup means there is no clear message to report to decision makers. Furthermore, the review does not appear to critically appraise the reviewed studies or assess the validity of the reported ICERs. Consequently, some inappropriately interpreted cost-effectiveness ratios have been reported in the review (for example the ICERs reported from Handorf et al.). Despite this, the overall conclusion of the review that most recent treatments considered for NSCLC do not appear to be acceptably cost-effective appears broadly correct given the literature cited.

Relevance to the guideline recommendations

The above article discusses the cost-effectiveness of techniques relevant to clinical question 2.6.5.

Please see above section detailing medical oncology cost effectiveness analysis.

Radiation Oncology

Cost-effectiveness analysis comparing conventional versus stereotactic body radiotherapy for surgically ineligible stage I NSCLC

Mitera et al. (2014) use a simple retrospective observational analysis to compare the costs and effects of conventionally fractionated radiotherapy (CFRT) and stereotactic body radiotherapy (SBRT) for the treatment of stage I NSCLC. Their analysis indicates that SBRT is more costly and more effective than CFRT and has a cost-effectiveness ratio well within standard cost-effectiveness thresholds.

The analysis compares stage Ia and Ib NSCLC patients receiving CFRT or SBRT instead of surgical resection. The analysis is a retrospective analysis of costs and mortality of patients at a Canadian hospital. The analysis gives a detailed description of the costs captured in the analysis.

The results show that the patients receiving SBRT have mean survival of 3.8 years, while those receiving CFRT have a mean survival of 2.8 years. The analysis estimates that the costs of CFRT and SBRT are CAN\$6,886 and CAN\$8,042, respectively (€5,700 and €6,600 respectively in 2014 in inflation and PPP adjusted euro). The authors use these differences in costs and effects to report an ICER of CAN\$1,120/LYG (€920/LYG). Accordingly, the low ICER estimate relative to commonly applied thresholds would suggest SBRT is a highly cost-effective alternative to CFRT.

The results of this study cannot be considered reliable, as it is unclear if the relatively large survival benefit of SBRT can be attributed to superior treatment effect or to differences in the patient characteristics between those receiving CFRT and SBRT. The introduction to the review itself notes that no randomised studies have demonstrated any difference between CFRT and SBRT. Furthermore, there are potentially relevant differences between the patient groups receiving each therapy, with more men and higher stage patients receiving CFRT than SBRT. No statistical testing is shown to examine the differences in the patient characteristics. Accordingly, the cost-effectiveness evidence presented in this study should be disregarded.

Comparison of surgical intervention and stereotactic body radiation therapy for stage I high-risk patients

Puri et al. (2012) presents a model based cost-effectiveness comparison of surgical resection and stereotactic body radiation therapy (SBRT) for high risk patients with stage I lung cancer. They conclude that while surgery is more costly than SBRT it is also more effective, supporting the cost-effectiveness of surgical resection rather than SBRT.

The analysis combines a retrospective analysis of high-risk patients receiving either surgery or SBRT with a simulation model. The observed recurrence rates from the observational study were adjusted using propensity score matching (PSM) with the aim of overcoming problems of selection bias between the two treatment groups. Using data from the PSM analysis they model the costs and effects of the two strategies. The effect estimates are not adjusted for quality of life, but rather are reported in life years gained (LYG). Costs and effects do not appear to be discounted.

The reported results show surgery to be somewhat more effective, with an expected LYG of 0.45. Surgery is found to be more costly too, with incremental costs of \$3,476 (€3,200/LYG in 2014 in inflation and PPP adjusted euro) and the resulting ICER is \$7,753/LYG (€7,200/LYG). This ICER is well within conventionally applied thresholds, such as the €45,000/QALY threshold commonly used in Ireland.

Overall this is a well described study. The attempt to correct for selection bias using PSM is appropriate and the discussion gives a clear description of the possible limitations of this method. The principal potential problem is that SBRT candidates are expected to have greater morbidity than those allocated to surgery

and PSM may not be fully able to correct for this. The lack of discounting is a notable methodological flaw and means the reported ICER is likely to be somewhat of an underestimate. However, given the relatively short amount of remaining life expectancy in most cases it is not likely that the discounted ICER would be so much higher as to rise above commonly applied thresholds. The study authors recognise the limits of the study design employed and suggest that prospective randomised studies are required to enhance confidence in the results reached. In conclusion, this report provides evidence of moderate quality supporting the cost-effectiveness of surgical resection rather than SBRT in high risk stage I lung cancer patients.

Cost-effectiveness analysis comparing conventionally fractionated radiotherapy versus stereotactic body radiotherapy for stage I NSCLC

Sher et al. (2011) presents a CEA of three alternative therapies for patients with early stage NSCLC not suitable for surgery. The analysis relates to peripheral tumours rather than those in the proximal bronchial tree. They compare radiofrequency ablation (RFA), three-dimensional conformal radiation therapy (3D-CRT) and stereotactic body radiotherapy (SBRT). They found 3D-CRT to be subject to extended dominance and SBRT to be the most costly and most effective, with a cost-effectiveness ratio relative to RFA that is within commonly applied thresholds.

The analysis employs a model to combine estimates from the literature on disease progression rates, costs, and health related quality of life related to the three strategies. Parameters that are particularly important to the model are local recurrence rates under each of the three therapies. The model gives particular consideration to adverse effects associated with the SBRT therapy. The analysis includes a detailed costing from the health payer perspective. The analysis also presents a range of sensitivity analyses.

The results show that RFA is the least costly and least effective treatment. 3D-CRT is more costly and more effective, but subject to extended dominance, meaning it will never be a preferred strategy from the cost-effectiveness perspective. SBRT is the most costly and most effective strategy. SBRT is estimated to yield an incremental QALY gain of over half a QALY relative to RFA, which is a large gain proportional to remaining life-expectancy in this case. The ICER of SBRT relative to RFA is \$14,100/QALY (€12,500/QALY in 2014 in inflation and PPP adjusted euro). Accordingly, SBRT would clearly be considered cost-effective relative to the thresholds of \$50,000/QALY applied in the US and €45,000/QALY commonly applied in Ireland. Sensitivity analyses never find 3D-CRT to be the preferred strategy and almost always find SBRT to be the preferred strategy.

This is a well presented study. The model is described adequately and the relevant costs and effects are accounted for. Discounting is applied appropriately. That 3D-CRT is dominated by other strategies is not reflected clearly in the paper and the reporting of an incorrect ICER for this strategy is one notable problem with the presentation of results but it does not affect the study's conclusions. The base case results and sensitivity analysis all support the conclusion that SBRT is likely to be cost-effective. The analysis notes that 3D-CRT may be the preferred strategies for tumours in the centre of the chest, where SBRT is less well tolerated.

Relevance to the guideline recommendations

The above article discusses the cost-effectiveness of techniques relevant to clinical question 2.7.1.

The evidence suggests that SBRT is less costly than surgery in high-risk patients with early stage NSCLC. However, surgery met the standard for cost-effectiveness due to a longer expected overall survival. This is supported by recommendation 2.7.1.1.

The evidence also suggests that SBRT compared to 3D-CRT and RFA, was the most cost-effective treatment for medically inoperable early stage NSCLC. This is also supported by recommendation 2.7.1.1.

Table 12.	Economic	literature	evidence table
-----------	----------	------------	----------------

Study	Intervention	Analysis	Clinical & QALY Outcomes	Costs	Results
Cao et al., 2012	Positron Emission Tomography in staging of non-small cell lung cancer and management of solitary pulmonary nodules.	Country: United Kingdom Discount rate: NA Perspective: NA Time Horizon: NA Model type: Systematic review	N/A	N/A	N/A
Deppen et al., 2014	Role of NB, CT-FNA, FDG-PET and VATS in patients presenting with pulmonary nodules suggestive of lung cancer.	Country: USA Discount rate: Not applied Perspective: Presenting to a thoracic surgeon (healthcare system) Time Horizon: Not stated Model type: Decision analysis model	In two-way sensitivity analysis, FDG-PET remained the least costly diagnostic strategy across all combinations of sensitivity between 80% and 100% and specificity between 60% and 90%. Efficacy for FDG-PET ranged from 14.08 to 14.22 QALYs across these combinations of sensitivity and specificity. Diagnosis by FDG-PET was the most effective and least costly strategy at the upper ranges of sensitivity and specificity when expected QALYs exceeded 14.17.	FDG-PET total cost (\$10,411) NB total cost (\$10,601) CT- FNA total cost(\$10, 603)VATS total cost \$11,720	The FDG-PET had the lowest expected cost for diagnosing patients (\$10,410) with an expected QALY of 14.12. Compared with FDG-PET, patients diagnosed using NB incurred an expected incremental cost of \$191 to obtain an additional 0.05 QALYs and resulted in an incremental cost- effectiveness ratio of \$4,602 per additional QALY. Diagnosis by CT-FNA had a similar cost (\$193) and efficacy with a QALY of 14.17 as compared with FDG-PET and marginally higher QALY (<0.01) when compared with NB. Diagnosis by VATS had both higher expected cost of \$11,720 and a lower effectiveness (14.15 QALYs), and the other two biopsy strategies provided higher QALYs at a lower cost than VATS biopsy.
Study	Intervention	Analysis	Clinical & QALY Outcomes	Costs	Results
--------------------------	--	---	---	--	--
Sharples et al., 2012	Endobronchial and endosopic ultrasound relative to surgical staging in potentially resectable lung cancer.	Country: Multinational (UK, Belgium, Netherlands) Discount rate: Not applied Perspective: Healthcare system Time Horizon: 6 months Model type Trial based economic analysis	Sensitivity for detecting mediastinal nodal metastases was 79% [41/52; 95% confidence interval (CI) 66% to 88%] for the surgical arm compared with 94% (62/66; 95% CI 85% to 98%) for the endosonography strategy (p=0.02). The corresponding NPVs were 86% (66/77; 95% CI 76% to 92%) and 93% (57/61; 95% CI 84% to 97%) (p=0.18). The expected QALY gain over 6 months was 0.344 (95% CI 0.292 to 0.383) for the endo- sonography strategy and 0.329 (95% CI 0.274 to 0.371) for surgical staging. The mean difference in QALYs was 0.015 (-0.023 to 0.052) in favour of the endosonography arm (with surgical staging if negative).	Total mean cost of initial endosonograpy followed by surgical staging (£9,713) per patient over 6 months. Surgical staging cost a mean of (£10,459).	In this randomised controlled trial (RCT), a strategy of using combined state-of- the-art, non invasive endosonography (EUS-FNA and EBUS- TBNA) followed by surgical staging (only if these tests were negative) had higher sensitivity and negative predicted probability, resulted in a lower rate of unnecessary thoracotomy and better quality of life during staging, and was slightly more effective and less expensive than the current practice of lung cancer staging using surgical staging alone.
Burfeind et al., 2010	Lobectomy (thoracoscopically vs thoracotomy)	Country: USA Discount rate: Not carried out due to short time period Perspective: Medical centre Time Horizon: 30 days Model type: Cost-minimisation analysis	The number of chest tube days as well as length of stay was statistically less for the TL group while the incidence of other common adverse outcomes was equivalent between the groups. In addition to the variables listed in the table, no patient in either group required re-operation for bleeding or received a transfusion, and there were no postoperative myocardial infarctions, strokes, empysemas or bronchopleural fistulae. The mean QALY for the PLT group was 0.74 ± 0.22 and for the TL group was $0.72 \pm$ 0.18. These were not statistically different, p=0.68.	Total costs for the PLT group were \$11,998 ± \$3549 and for the TL group \$10,120 ± \$2817. The PLT strategy remained statistically more expensive than the TL strategy with p=0.005.	Baseline characteristics were similar in the two groups. Total costs (\$US) were significantly greater for the strategy of PLT (\$12,119) than for TL (\$10,084; p=0.0012). Even when only stage I and II lung cancers were included (n = 32 PLT, n = 69 TL), total costs for PLT were still higher than that for TL (\$11,998 vs \$10,120; p=0.005). The mean QALY for the PLT group was 0.74 \pm 0.22 and for the TL group was 0.72 \pm 0.18 (p=0.68).

Study	Intervention	Analysis	Clinical & QALY Outcomes	Costs	Results
Puri et al., 2012	Surgical intervention vs stereotactic body radiation therapy in stage I lung cancer in high risk patients.	Country: USA Discount rate: Not applied Perspective: Payer's Time Horizon: Lifetime Model type: Decision analysis	In the surgical group operative mortality was 4 (7%) of 57. Median survival was 4.2 years, and 4-year survival was 51.4% (n = 21). Thirteen of 53 surgical survivors with incidental N1/N2 disease (11 with N1 and 2 with N2 disease) were eligible for chemotherapy. Of these, 7 patients underwent chemotherapy. In the SBRT arm there was no treatment-related mortality, and the rate of major morbidity was 1.8% (1/57). None of the patients undergoing SBRT received chemotherapy. Median survival was 2.9 years, and 4-year survival was 30.1% (n = 12, p=.101). QALYs – were not determined	The expected cost of treating patients with surgical intervention was \$17,629, and there was an expected survival of 3.39 years during the 5-year period evaluated in modeling. Compared with SBRT, patients treated with surgical intervention incurred an expected incremental cost of \$3476 but lived an additional 0.45 years, resulting in an incremental cost- effectiveness ratio of \$7753 per additional year of survival.	Fifty-seven patients in each arm were selected by means of propensity score matching. Median survival with surgical intervention was 4.1 years, and 4-year survival was 51.4%. With stereotactic body radiation therapy, median survival was 2.9 years, and 4-year survival was 30.1%. Cause-specific survival was identical between the 2 groups, and the difference in overall survival was not statistically significant. For decision modeling, stereotactic body radiation therapy was estimated to have a mean expected survival of 2.94 years at a cost of \$14,153 and mean expected survival with surgical intervention was 3.39 years at a cost of \$17,629, for an incremental cost- effectiveness ratio of \$7753.
Sher et al., 2011	Steroetactic body radiotherapy and radiofrequenncy ablation for medically inoperable, early stage non-small lung cancer.	Country: USA Discount rate: 3%. Perspective: Payer's (Medicare) Time Horizon: Lifetime Model type Cost-effectiveness analysis	In the base-case analysis, RFA, 3D-CRT, and SBRT were associated with a mean cost per quality- adjusted life-expectancy of \$44,648/1.45, \$48,842/1.53, and \$51,133/1.91, respectively. The ICER of 3D-CRT over RFA was \$52,400/QALY. However, the ICER of SBRT over 3D-CRT was \$6,000/ QALY, and thus the ICER of SBRT over RFA was \$14,100/QALY. In other words, if all three treatment options are available to the clinician, in the base case, SBRT is clearly the most cost-effective treatment, whereas if SBRT delivery is not feasible, RFA is the next most cost-effective option.	Total cost associated with SBRT (\$14,741.13), 3D-CRT (\$11,014.77), RFA (\$5,897.62)	The incremental cost- effectiveness ratio for SBRT over 3D-CRT was \$6,000/quality- adjusted life-year, and the incremental cost-effectiveness ratio for SBRT over RFA was \$14,100/quality- adjusted life-year. One- way sensitivity analysis showed that the results were robust across a range of tumour sizes, patient utility values, and costs. This result was confirmed with probabilistic sensitivity analyses that varied local control rates and utilities.

Study	Intervention	Analysis	Clinical & QALY Outcomes	Costs	Results
Chouaid et al., 2014	Rejected	N/A	N/A	N/A	N/A
Mitera et al., 2014	Rejected	N/A	N/A	N/A	N/A

Part B: Budget Impact Analysis

Radiology

All figures were calculated using incidence figures for 2013 from the NCRI, due to the extensive budget requirement for PET-CT availabliity of PET-CT scans should be considered for all cancer centres.

Radiology

Clinical question 2.2.1 In non-small cell lung cancer (NSCLC) patients with mediastinal and hilar adenopathy what is the efficacy of CT (contrast and non-contrast) and PET-CT in the diagnosis of lung cancer?

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.2.1.1 Contrast enhanced CT scanning of the chest and upper abdomen to include the entire liver is recommended in all patients with suspected lung cancer, regardless of chest X-ray results.	None	N/A	N/A	€0
2.2.1.2 A tissue diagnosis of lung cancer should not be inferred from CT appearances alone.	None	N/A	N/A	€0
2.2.1.3 PET-CT is recommended for mediastinal and hilar lymph node staging in patients with potentially radically treatable non-small cell lung cancer (NSCLC) prior to invasive staging.	PET-CT	€1,199	483	€579,117
2.2.1.4 In patients with PET activity in a mediastinal lymph node and normal appearing nodes by CT (and no distant metastases), sampling of the mediastinum is recommended over staging by imaging alone.	None	N/A	N/A	€0

Clinical Question 2.2.2 In patients with peripheral lung nodules, what is the efficacy of the following tests in the diagnosis of lung cancer? - Percutaneous fine needle aspiration and transthoracic needle biopsy - Guided bronchoscopy - Video assisted thoracoscopic surgery (VATS)

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.2.2.1 Percutaneous FNA, TTNB, guided bronchoscopy and VATS are all appropriate first-line modalities for tissue diagnosis of peripheral lung nodules.	None	N/A	N/A	€0
2.2.2.2 While percutaneous TTNA/biopsy has a higher diagnostic yield, bronchoscopy (including guided approaches where available) may provide a diagnosis for peripheral lesions.	None	N/A	N/A	€0

Clinical question 2.2.3 In NSCLC patients with early stage disease who are high risk surgery candidates, what is the effectiveness of ablative techniques?

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.2.3.1 In patients with clinical stage Ia tumours who are high risk surgical candidates, ablative techniques may be considered to achieve local control.	None	N/A	N/A	€0

Clinical question 2.2.4 For patients with NSCLC who have undergone surgical resection or radiotherapy with curative intent, is there a role for imaging surveillance?

Recommendation number:	Additional resource required:	Resource cost	No. Required	Total cost:
2.2.4.1 Consider close follow-up for patients who have undergone treatment with curative intent (including surgery and radiotherapy), to include periodic radiological evaluation with CT.	CT TAP	€131	658*	€86,198
*CT will be required in these patients and costing can only be determined when a definitive imaging follow-up schedule is determined.				

Recommendation number:	Resource required:	Resource cost:	No. required:	Total cost:
2.2.5.1 A negative PET-CT reliably excludes adrenal metastases in patients with NSCLC.	None	N/A	N/A	€0
2.2.5.2 In NSCLC patients with PET-CT positive for adrenal metastasis, histological confirmation should be considered unless there is overwhelming clinical and imaging evidence of widespread metastatic disease.	None	N/A	N/A	€0
2.2.5.3 In NSCLC patients with indeterminate adrenal lesions on PET-CT further assessment with adrenal specific CT or MRI criteria may be considered. If non-invasive imaging findings are indeterminate, adrenal sampling such as EUS-FNA, percutaneous biopsy or adrenalectomy may be considered.	None	N/A	N/A	€0
Clinical question 2.2.6 For patients with NSCLC metastases: MRI, CT, PET-CT?	which of the foll	owing tests is mo	ost accurate for c	letecting brain
Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.2.6.1 Offer patients with signs/symptoms suggestive of brain metastases, contrast-enhanced CT of the head followed by contrast-enhanced MRI if normal or MRI as an initial test.	None	N/A	N/A	€0
2.2.6.2 Offer MRI or CT of the head in patients with stage III NSCLC selected for treatment with curative intent.	None	N/A	N/A	€0
2.2.6.3 Do not routinely offer imaging of the brain in patients with stage I and II NSCLC.	None	N/A	N/A	€0

metastases: isotope bone scan, CT, MRI, PET-CT?					
Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:	
2.2.7.1 For patients with NSCLC with suspected bone metastasis, evaluation with PET-CT is recommended over bone scintigraphy or CT.	None	N/A	N/A	€0	
2.2.7.2 Bone scintigraphy is not necessary when PET- CT has not shown bone metastases.	None	N/A	N/A	€0	
Clinical question 2.2.8 In patients with limited- change management?	stage small-cell lu	ung cancer (SCLC) on diagnostic C	T, does PET-CT	
Recommendation no:	Additional resource required	Resource cost	No. Required	Total Cost	

Radiology Total Costs

€665,315

Respiratory Medicine

Clinical question 2.3.1 What is the efficacy of bronchoscopy in identifying lung cancer?					
Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:	
2.3.1.1 Patients with central lesions (within proximal one-third of the hemithorax) alone (considered reachable by standard bronchoscopy) who are otherwise fit should undergo flexible bronchoscopy in order to establish a histological or cytological diagnosis.	None	N/A	N/A	€O	
2.3.1.2 Visible tumours should be sampled using more than one technique to optimise sensitivity.	None	N/A	N/A	€0	
2.3.1.3 Consider bronchoscopy to provide a diagnosis for peripheral lesions, although percutaneous FNA biopsy has a higher diagnostic yield.	None	N/A	N/A	€0	

Clinical question 2.3.2 In patients with mediastinal adenopathy: What is the efficacy of EBUS, EBUS/EUS and mediastinoscopy in the diagnosis of lung cancer?

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.3.2.1 Endoscopic assessment of the mediastinal lymph nodes with EBUS-TBNA with or without EUS-FNA should be offered to patients with suspected lung cancer prior to mediastinoscopy.	None	N/A	N/A	€0

Clinical question 2.3.3 In patients with pleural effusion and suspected lung cancer, what is the efficacy of pleural sampling in the diagnosis of lung cancer?

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.3.3.1 In patients being considered for active therapy, pleural effusion should be investigated with pleural aspiration.	None	N/A	N/A	€0
2.3.3.2 If pleural fluid cytology is negative, and treatment will change depending on the nature of the pleural fluid, pleural biopsy using image guided or thoracoscopic biopsy is recommended.	None	N/A	N/A	€0

Clinical question 2.3.4 What is the role of palliative interventions in the management of malignant airway obstruction?

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.3.4.1 In lung cancer patients with symptomatic (including breathlessness, haemoptysis and cough) malignant airway obstruction, any of the following therapeutic interventions may be considered: bronchoscopic debulking, tumour ablation modalities, airway stent placement and radiotherapy (external beam or brachytherapy).	None	N/A	N/A	€0

Respiratory Medicine Total Cost:

€0

Pathology

Clinical question 2.4.1

a) What is the benefit of histopathological analysis for small-cell lung cancer (SCLC) vs. non-small cell lung cancer (NSCLC)?

b) When should immunohistochemical analysis be performed?

c) What is the best panel(s) of immunohistochemical stains for NSCLC subtypes?

Recommendation number:	Additional resource	Resource cost:	No. required:	Total cost:
	required:	N1/A	N1/A	
2.4.1.1 Distinguishing between small-cell carcinoma and non-small cell carcinoma of the lung is recommended. For challenging cases, a diagnostic panel of immunohistochemical assays is recommended to increase the diagnostic accuracy.	None	N/A	N/A	€0
2.4.1.2 In individuals with pathologically diagnosed non-small cell cancer (NSCLC), additional discrimination between adenocarcinoma and squamous cell carcinoma, even on cytologic material or small tissue samples is recommended.	None	N/A	N/A	€0

Clinical question 2.4.2 What is the efficacy of the following diagnostic tools in identifying and staging lung cancer?

- ROSE at EBUS

- Frozen section

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
 2.4.2.1 Endobronchial ultrasound rapid on-site evaluation (EBUS ROSE) should be made available whenever resources permit. *Based on expert opinion. 	ROSE at EBUS	Unknown	745*	
2.4.2.2 Consider intra-operative frozen section analysis in primary diagnosis when preoperative diagnosis is not available.	None	N/A	N/A	€0
2.4.2.3 In selected cases intra-operative frozen section analysis for staging may be considered.	None	N/A	N/A	€0

Clinical question 2.4.3 In patients with NSCLC, how do cytological samples compare with tissue biopsy samples for tumour sub-typing, immunohistochemistry and predictive markers assessed by FISH or mutational analysis?						
Recommendation number:Resource required:Resource cost:No. required:Total cost:						
2.4.3.1 Cytology samples can be used to provide material suitable for both NSCLC sub-typing and some molecular analysis, provided the samples are appropriately handled and processed.	None	N/A	N/A	€O		
Clinical question 2.4.4 What are optimal formalir	n fixation times f	or future molecu	ular diagnostics?			
Recommendation number:	Resource required:	Resource cost:	No. required:	Total cost:		
2.4.4.1 Fixation times of 6 to 12 hours for small biopsy samples and 8 to 18 hours for larger surgical specimens generally give best results, although	None	N/A	N/A	€0		

Pat	hology Total Cost	€0

Surgery

Clinical queation 2.5.1 In patients with stage I & II non-small cell lung cancer (NSCLC) how does the extent of lung resection effect outcomes?

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.5.1.1 For patients with clinical stage I and II non-small cell lung cancer (NSCLC) who are medically fit for surgical resection, a lobectomy rather than sublobar resection is recommended.	None	N/A	N/A	€0

Clinical question 2.5.2 In patients with clinical stage I NSCLC undergoing lobectomy, how does video-assisted thoracic surgery (VATS) compare to thoracotomy?

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.5.2.1 For patients with clinical stage I NSCLC, video- assisted thoracic surgery (thoracoscopy) should be considered as an alternative to thoracotomy for anatomic pulmonary resection.	Longer operating time & higher capital costs. Identified higher operative times (median 173 min vs. 143 min, P < 0.0001) for subjects having VATS resection (Paul et al., 2010).	30 mins theatre time = €917	471	€431,907

Clinical question 2.5.3 Which pulmonary function tests should be used to determine fitness for resection?				
Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.5.3.1 Pulmonary function testing (spirometry, diffusion capacity, lung volume) should be performed in all patients being considered for surgical resection.	None	N/A	N/A	€0
2.5.3.2 Postoperative predictive values should be calculated using broncho-pulmonary segment counting. If a mismatch is suspected ventilation perfusion scan should be performed.	None	N/A	N/A	€0
2.5.3.3 Offer patients surgery if they have an $FEV_1 \& D_{LCO}$ within normal limits (postoperative predicted values >60%).	None	N/A	N/A	€0
2.5.3.4 Patients with ppo-FEV ₁ and/or $D_{LCO} < 30\%$ should have formal cardiopulmonary exercise testing with measurement of VO ₂ max.	None	N/A	N/A	€0
2.5.3.5 Patients with ppo-FEV ₁ and/or $D_{LCO} > 30\%$ and $<60\%$ – supplementary functional exercise assessments should be considered.	None	N/A	N/A	€0
2.5.3.6 In patients with lung cancer being considered for surgery and a VO ₂ max <15mL/kg/min predicted, it is recommended that they are counselled about minimally invasive surgery, sublobar resections or non-operative treatment options for their lung cancer.	None	N/A	N/A	€0

Clinical question 2.5.4 In patients with lung cancer, how should non-pulmonary co-morbidity influence surgical selection?

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.5.4.1 Lung cancer surgery remains the best opportunity for potential cure in patients with significant co-morbidity. Efforts to contain and manage that risk should start with preoperative scoring (thoracoscore) and should ideally include attendance at a preoperative assessment clinic, where practical.	None	N/A	N/A	€0
2.5.4.2 Seek a cardiology review in patients with an active cardiac condition or ≥3 risk factors or poor cardiac functional capacity.	None	N/A	N/A	€O
2.5.4.3 Offer surgery without further investigations to patients with ≤2 risk factors and good cardiac functional capacity.	None	N/A	N/A	€O
Clinical question 2.5.5 Should lung cancer surge	ry be offered to a	octogenarians?	1	1
Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.5.5.1 Age >80 years should not automatically preclude surgery. Decisions should be based on oncological stage, co-morbidity and physiological testing.	None	N/A	N/A	€0

Clinical question 2.5.6 In patients with NSCLC what is the optimum surgical approach for?

a) Multifocal tumours

b) Synchronous tumours

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.5.6.1 Multifocal In patients with suspected or proven multifocal lung cancer (without mediastinal or extrapulmonary disease), curative-intent treatment may be considered, following discussion at a multidisciplinary team meeting.	None	N/A	N/A	€0
2.5.6.2 Synchronous In patients with suspected or proven synchronous primary lung cancers (without mediastinal or extrapulmonary disease), curative-intent treatment may be considered, following discussion at a multidisciplinary team meeting.	None	N/A	N/A	€0

Clinical question 2.5.7 In patients with NSCLC, what is the optimal lymph node strategy at surgical resection?

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.5.7.1 Systematic mediastinal lymph node dissection should be performed in all patients having a lung cancer resection.	None	N/A	N/A	€0

Clinical question 2.5.8 In patients with malignant pleural effusion associated with lung cancer, what is the best treatment strategy?

	1		1	
Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
 2.5.8.1 In patients with malignant pleural effusion whose symptoms improved following drainage, a number of options are available depending on performance status and documentation of lung re-expansion: In patients with good performance status with lung re-expansion, thoracoscopy with talc pleurodesis is recommended. In patients with non-expandable lung, tunnelled catheters may be considered. In patients with poor performance status with lung re-expansion, options include: tunnelled pleural catheter, serial thoracentesis, or bedside talc pleurodesis. 	None	N/A	N/A	€0

Clinical question 2.5.9 Should surgical resection be considered in patients with NSCLC, who have treatable isolated brain or adrenal metastases at the time of presentation?

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.5.9.1 In patients with an isolated brain metastasis and a synchronous resectable primary NSCLC, sequential resection of the primary tumour and definitive treatment of the brain metastasis may be considered, following discussion at a multidisciplinary team meeting.	None	N/A	N/A	€0
2.5.9.2 In patients with an isolated adrenal metastasis and a synchronous resectable primary NSCLC, sequential resection of the primary tumour and definitive treatment of the adrenal metastasis may be considered, following discussion at a multidisciplinary team meeting.	None	N/A	N/A	€0

Clinical question 2.5.10 Should surgical resection be considered as part of the multimodality treatment of patients with stage IIIa (N2) NSCLC?

Recommendation number:		Resource cost:	No. required:	Total cost:
2.5.10.1 Consider surgery as part of multimodality management in patients with T1-3 N2 (non- fixed, non-bulky, single zone) M0 disease.	None	N/A	N/A	€0

Clinical question 2.5.11 In patients with small-cell lung cancer (SCLC) what is the role of surgery?

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.5.11.1 Patients with clinical stage I small-cell lung cancer (SCLC) and excellent performance status may be considered for resection following extensive staging investigation as part of a multimodality treatment regimen.	None	N/A	N/A	€0

Surgery Total Cost

Medical Oncology

curative surgery, how effective is pre-operative n				1					
Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:					
2.6.1.1 Preoperative chemoradiotherapy For patients with non-small cell lung cancer (NSCLC) who are suitable for surgery, do not offer neoadjuvant chemoradiotherapy outside a clinical trial.	N/A	N/A	N/A	€O					
2.6.1.2 Preoperative chemotherapy Following discussion at a multidisciplinary team meeting, appropriate patients with NSCLC who are suitable for surgery can be considered for neoadjuvant chemotherapy.	Restaging Scan (CT TAP)	€131	483	€63,273					
Clinical question 2.6.2 In patients with locally advanced NSCLC having radical radiotherapy, is concurrent chemoradiotherapy more effective than sequential chemoradiotherapy?									
Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:					
2.6.2.1 Concurrent chemoradiotherapy should be administered to patients with locally advanced NSCLC (suitable for radical radiotherapy) who have a good performance status (0-1).	None	N/A	N/A	€0					
				Clinical question 2.6.3 In patients with locally advanced NSCLC having concurrent radical chemoradiotherapy, what is the effectiveness of: a) Induction (first-line) chemotherapy b) Consolidation chemotherapy					
what is the effectiveness of: a) Induction (first-line) chemotherapy	vanced NSCLC h	aving concurrent	radical chemor	l adiotherapy,					
what is the effectiveness of:	vanced NSCLC ha	aving concurrent Resource cost:	No. required:	adiotherapy,					

Clinical Question 2.6.4 In patients with advanced/stage IV NSCLC what is the effectiveness of first-line chemotherapy and is there any evidence that particular regimens or drugs are more effective or less toxic than others?

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.6.4.1 Effectiveness of first-line cytotoxic chemotherapy In patients with a good performance status (PS) (i.e. Eastern Cooperative Oncology Group [ECOG] level 0 or 1) and stage IV NSCLC a platinum-based chemotherapy regimen is recommended based on the survival advantage and improvement in quality of life (QOL) over best supportive care (BSC).	N/A	N/A	N/A	€0
2.6.4.2 Effectiveness of first-line cytotoxic chemotherapy In patients with stage IV NSCLC and a good performance status, two-drug combination chemotherapy is recommended. The addition of a third cytotoxic chemo-therapeutic agent is not recommended because it provides no survival benefit and may be harmful.	N/A	N/A	N/A	€0
2.6.4.3 Effectiveness of first-line cytotoxic chemotherapy In patients receiving palliative chemotherapy for stage IV NSCLC, it is recommended that the choice of chemotherapy is guided by histological type of NSCLC.	N/A	N/A	N/A	€0
2.6.4.4 Effectiveness of first-line cytotoxic chemotherapy Bevacizumab plus platinum-based chemotherapy may be considered an option in carefully selected patients with advanced NSCLC. Risks and benefits should be discussed with patients before decision making.	N/A	N/A	N/A	€0
2.6.4.5 Effectiveness of first-line targeted therapy First-line single agent EGFR tyrosine kinase inhibitors (TKI) should be offered to patients with sensitising EGFR mutation positive NSCLC. Adding combination chemotherapy to TKI confers no benefit and should not be used.	N/A	N/A	N/A	€0
2.6.4.6 Effectiveness of first-line targeted therapy Crizotinib should be considered as first-line therapy in patients with ALK positive NSCLC tumours.	N/A	N/A	N/A	€0

Clinical Question 2.6.5 In patients with advanced/stage IV NSCLC is there any evidence for maintenance systemic therapy?

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.6.5.1 In patients with stage IV non-squamous NSCLC who do not experience disease progression and have a preserved performance status after 4-6 cycles of platinum-based therapy, treatment with maintenance pemetrexed is suggested.	N/A	N/A	N/A	€0
2.6.5.2 In patients with stage IV NSCLC, switch maintenance therapy with chemotherapy agents other than pemetrexed has not demonstrated an improvement in overall survival and is not recommended.	N/A	N/A	N/A	€0
2.6.5.3 In patients with stage IV NSCLC who do not experience disease progression after 4-6 cycles of platinum-based double agent chemotherapy, there is insufficient evidence to recommend maintenance therapy with erlotinib.	N/A	N/A	N/A	€0

Clinical question 2.6.6 In patients with advanced/stage IV NSCLC aged over 70, and/or with poor performance status, what is the effectiveness of first-line therapy?

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.6.6.1 In elderly patients (age 70-79 years) with stage IV NSCLC who have good performance status and limited co-morbidities, treatment with a platinum doublet chemotherapy is recommended.	Increased liklihood of hospital admissions of elderly patients. Increased frequency and duration of hospital stay and an increase in need for community supports (e.g. home care team, hospice) therefore the additional resources are not applicable specifically to the implementation of this guideline.	N/A	N/A	€0
2.6.6.2 In patients with stage IV NSCLC with a performance status of 2, single agent chemotherapy may be considered. Platinum doublet chemotherapy is suggested over single agent chemotherapy if the performance status of 2 is cancer related rather than co-morbidity associated.	N/A	N/A	N/A	€0
2.6.6.3 Unfit patients of any age (performance status (3-4)) do not benefit from cytotoxic chemotherapy. However if patients harbor an EGFR or ALK mutation positive tumour, they may be considered for treatment with targeted therapies.	N/A	N/A	N/A	€0

There is no data to support maintenance

therapy in limited-stage or extensive-stage SCLC.

Recommendation number:	Additional	Resource	No. required:	Total cost:	
	resource required:	cost:			
2.6.7.1 Second-line systemic anticancer therapy (SACT) with single agent drugs should be considered. The choice of agent to be used should be made on a case by case basis taking into account previous treatment, mutation status and co- morbidities.	N/A	N/A	N/A	€0	
Clinical question 2.6.8 Is there any evidence that particular regimens or drugs are more effective or less toxic than others for the first-line treatment of limited-stage and extensive-stage small-cell lung cancer (SCLC)?					
Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:	
2.6.8.1 In patients with either limited-stage or extensive-stage small-cell lung cancer (SCLC), platinum-based chemotherapy with either cisplatin or carboplatin plus etoposide is recommended.	N/A	N/A	N/A	€0	
2.6.8.2 Non-platinum combinations can be considered in patients with limited-stage and extensive- stage SCLC.	N/A	N/A	N/A	€0	
Clinical question 2.6.9 In patients with limited-st chemotherapy?	age and extensiv	e-stage SCLC is t	here any role fo	r maintenance	
Recommendation number:	Additional resource	Resource cost:	No. required:	Total cost:	
	required:				

Clinical question 2.6.10 How effective is second-line systemic therapy in patients with SCLC who progress and relapse?

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.6.10.1 In patients with relapsed refractory SCLC, second-line therapy should be considered.	N/A	N/A	N/A	€0
2.6.10.2 Re-initiation of the previously administered first- line chemotherapy regimen is recommended in patients with SCLC who relapse greater than six months from completion of initial chemotherapy.	N/A	N/A	N/A	€0
2.6.10.3 Single agent chemotherapy should be considered in patients with primary refractory SCLC to maintain or improve quality of life.	N/A	N/A	N/A	€0

Medical Oncology Total Cost

€63,316

Radiation Oncology

Clinical question 2.7.1 In patients with non-small cell lung cancer (NSCLC) early stage disease (T1-T2 N0 M0) who are unfit for surgery, what is the effectiveness of stereotactic radiotherapy, standard radical radiotherapy and radiofrequency ablation?

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.7.1.1 Every patient with early stage disease (T1-T2 N0 M0) should be evaluated for fitness for surgery. If unfit for surgery, or surgery is declined, patients should be considered for radical treatment, preferably SBRT/SABR or radical radiotherapy	Unknown	Unknown	Unknown	Unknown
2.7.1.2 Radiofrequency ablation (RFA) can be considered for patients with clinical stage Ia tumours who are not suitable for surgery following discussion at a multidisciplinary team meeting. (Refer to <i>Clinical question 2.2.3</i>).	None	N/A	N/A	€0

Clinical question 2.7.2 In patients with stage I-III NSCLC undergoing radical external beam radiation therapy what is the role and effectiveness of the following:

a) New technology (IMRT/4DCT- breathing adapted radiotherapy)

b) Altered radiation fractionation schedules (Hyper and/or accelerated fractionation)

c) Dose

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.7.2.1 In patients receiving combined chemoradiotherapy standard fractionation should be used to deliver a radical dose equivalent to 60 – 66 Gy.	 a) Yes, with investment in upgrading equipment - Cost Unknown b) Yes with resource implications if altered fractionation was to be implemented but it is not current practice due to the low clinical benefit 	Unknown	Unknown	€0
2.7.2.2 When a radical dose is considered, 3D-CRT is the minimum technique to be used.	4DCT	Unknown	Unknown	Unknown
2.7.2.3 When available, CHART can be considered in patients with non-operable stage I-III non- small cell lung cancer (NSCLC) not receiving chemotherapy.	Unknown	Unknown	Unknown	Unknown

Clinical question 2.7.3 In patients with stage III NSCLC undergoing radical three-dimensional conformal radiotherapy (3DCRT):

a) What are the most useful predictors of lung and oesophageal toxicity?

b) What are the most useful measures to reduce toxicity: clinical/technical?

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.7.3.1 Perform three-dimensional treatment planning in patients undergoing radical thoracic radiotherapy. 4DCT should be performed where available.	4DCT	Unknown	Unknown	Unknown
2.7.3.2 The dose volume parameters for the organs at risk (e.g. oesophagus, lung) need to be taken into account. It is prudent to limit V_{20} to $\leq 30-35\%$ and mean lung dose to $\leq 20-23$ Gy (with conventional fractionation) if one wants to limit the risk of radiation pneumonitis to $\leq 20\%$ in definitively treated patients with NSCLC.	None	N/A	N/A	N/A

Clinical question 2.7.4 In patients with NSCLC post surgery, which groups should receive postoperative radiotherapy (PORT) or adjuvant RT? a) pN2 R0 b) any pN, R1, R2 resection

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.7.4.1 In patients with R1 resection, regardless of N status, postoperative radiotherapy (PORT) should be proposed sequentially delivering a radical dose of 60 Gy in 30 fractions.	4D IMRT	Unknown	Unknown	Unknown
2.7.4.2 In patients with a pN2 stage and a complete resection there is no consensus to the benefit of PORT. If considered, PORT should be delivered at a dose of 50 Gy standard fractionation.	None	N/A	N/A	€0
2.7.4.3 PORT is not indicated in patients with a complete resection R0 and N0 disease.	None	N/A	N/A	€0

Clinical question 2.7.5 In patients with small-cer radiotherapy (including technical parameters) a) Limited-stage prophylactic cranial irradiation b) Limited-stage thoracic radiotherapy c) Extensive-stage PCI d) Extensive-stage thoracic radiotherapy		EC), what is the	evidence suppor	ting the role of
Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.7.5.1 Consolidation prophylactic cranial irradiation (PCI) is recommended in patients with limited- stage small-cell lung cancer (SCLC) having a response to chemoradiotherapy.	Thoracic RT	Unknown	Unknown	Unknown
2.7.5.2 In combined modality care, thoracic radiotherapy is recommended in patients with limited-stage SCLC and should be initiated as early as possible.	Thoracic RT	Unknown	Unknown	Unknown
2.7.5.3 Consolidation PCI is recommended in patients with extensive-stage SCLC having a response to chemotherapy.	Consolidation PCI	Unknown	Unknown	Unknown
2.7.5.4 Consolidation thoracic radiotherapy may be considered in patients with extensive-stage SCLC having a response to chemotherapy.	Thoracic RT	Unknown	Unknown	Unknown

Radiation Oncology Total Cost:

€0

Palliative Care

Clinical question 2.8.1 Does the involvement of specialist palliative care result in better quality of life for patient or family, symptom control, or improved cost-effectiveness compared with standard care alone (no involvement from specialist palliative care)?

Recommendation number:	Additional resource required:	Resource cost:	No. required:	Total cost:
2.8.1.1 Patients with stage IV non-small cell lung cancer (NSCLC) should be offered concurrent specialist palliative care and standard oncological care at initial diagnosis.	None	N/A	N/A	€0
Clinical question 2.8.2 Who should comprise the	palliative care n	nultidisciplinary	ceam?	

Recommendation number:		Resource cost:	No. Required:	Total cost:
No recommendation only Good Practice Point	None	N/A	N/A	€0

Palliative Care Total Costs

Total cost of guideline implementation:

Subgroup	Cost of implementation
Radiology	€665,315
Respiratory Medicine	0
Pathology	0
Surgery	€431,907
Medical Oncology	€63,273
Radiation Oncology	0
Palliative Care	0
Cost of audit on implementation (€27,000 x 2 p/a x 3 years)	€162,000
Total cost of implementation:	€1,322,495

€0

<u> </u>
σ
0
_
0
. ॅ
÷
-
U
<u></u>
Ð
_
0
_
• •

_
σ
Ē.
<u> </u>
(1)
per
0
Apper

guidelines is more likely if the behaviour is specified in the implementation plan (Michie et al., 2004). The Behaviour Change Wheel was developed in 2011 as a tool for designing and evaluating behaviour change interventions. This model is based around the three conditions which influence training, enablement, persuasion, incentivisation, coercion, modelling, restrictions and environmental restructuring). This model has been used to behaviour: capability, opportunity and motivation. Each component can be mapped onto one of nine different intervention functions (education, The guideline implementation plan is based on the COM-B model of behaviour change (Michie et al., 2011). Changing clinical behaviour with clinical assess barriers and facilitators to guideline development and implementation and is outlined in detail in the NCCP Guideline Methodology Manual

Q2.2.1 In non-small cell lung Con cancer (NSCLC) patients upp with mediastinal and hilar reco adenopathy, what is the efficacy of CT (contrast and non-contrast) and PET-CT in the A ti diagnosis of lung cancer?	Contrast enhanced CT scanning of the chest and upper abdomen to include the entire liver is recommended in all patients with suspected lung	Clinicians must have access to PET-CT.	If DET-CT is nerformed at		
ET-CT in the A ti ncer? infe	cancer, regardless of chest X-ray results.		hospitals that are not cancer Opportunity (physical), centres then such hospitals will require the appropriate	Capability (physical) Opportunity (physical).	Training, Enablement, Environmental restructuring.
	A tissue diagnosis of lung cancer should not be inferred from CT appearances alone.		to be available for review at MDM in cancer centres.		
P E1 lym pric	T-CT is recommended for mediastinal and hilar nph node staging in patients with potentially dically treatable non-small cell lung cancer (NSCLC) or to invasive staging.				
In F noc dist recc	patients with PET activity in a mediastinal lymph de and normal appearing nodes by CT (and no :tant metastases), sampling of the mediastinum is commended over staging by imaging alone.				
I č		PET-CL IN the A tissue diagnosis or lung cancer should not be g cancer? Inferred from CT appearances alone. PET-CT is recommended for mediastinal and hilar lymph node staging in patients with potentially radically treatable non-small cell lung cancer (NSCLC) prior to invasive staging. In patients with PET activity in a mediastinal lymph node and normal appearing nodes by CT (and no distant metastases), sampling of the mediastinum is recommended over staging by imaging alone.		A tissue diagnosis of lung cancer should not be inferred from CT appearances alone. PET-CT is recommended for mediastinal and hilar lymph node staging in patients with potentially radically treatable non-small cell lung cancer (NSCLC) prior to invasive staging. In patients with PET activity in a mediastinal lymph node and normal appearing nodes by CT (and no distant metastases), sampling of the mediastinum is recommended over staging by imaging alone.	A tissue diagnosis of lung cancer should not be inferred from CT appearances alone. PET-CT is recommended for mediastinal and hilar lymph node staging in patients with potentially radically treatable non-small cell lung cancer (NSCLC) prior to invasive staging. In patients with PET activity in a mediastinal lymph node and normal appearing nodes by CT (and no distant metastases), sampling of the mediastinum is recommended over staging by imaging alone.

Capacity Physical or physical admits to enact the behaviou. Opportunity Physical and social environment that enables behaviour. Motivation Reflective and automatic mechanisms that activate or inhibit behaviour.

Clinical Questions	Recommendation	Facilitators/barriers to implementation	Target behaviour (B)	COM*	Possible intervention functions
Q2.2.2 In patients with peripheral lung nodules, what is the efficacy of the following tests in the diagnosis of lung cancer? – Percutaneous fine needle aspiration and Transthoracic needle biopsy – Guided bronchoscopy – Video assisted thoracoscopic surgery (VATS)	Percutaneous FNA, TTNB, guided bronchoscopy and VATS are all appropriate first-line modalities for tissue diagnosis of peripheral lung nodules. While percutaneous TTNA/biopsy has a higher diagnostic yield, bronchoscopy (including guided approaches where available) may provide a diagnosis for peripheral lesions.	Potential implication for surgery if increased VATS.	Current practice.		1
Q2.2.3 In NSCLC patients with early stage disease who are high risk surgery candidates, what is the effectiveness of ablative techniques?	In patients with clinical stage la who are high risk surgical candidates, ablative techniques may be considered to achieve local control.	N/A	N/A	N/A	N/A
Q2.2.4 For patients with NSCLC who have undergone surgical resection or radiotherapy with curative intent, is there a role for imaging surveillance?	Consider close follow-up for patients who have undergone treatment with curative intent (including surgery and radiotherapy), to include periodic radiological evaluation with CT.	Increased imaging requirements. Only affects a small numbers of patients.	N/A	N/A	N/A
Q2.2.5 For patients with NSCLC which of the following tests is most accurate for detecting metastatic spread to indeterminate adrenal nodules/ masses: chemical shift MRI, non-contrast CT, PET-CT?	A negative PET-CT reliably excludes adrenal metastases in patients with NSCLC. In NSCLC patients with PET-CT positive for adrenal metastasis, histological confirmation should be considered unless there is overwhelming clinical and imaging evidence of widespread metastatic disease. In NSCLC patients with indeterminate adrenal lesions on PET-CT further assessment with adrenal specific CT or MRI criteria may be considered. If non-invasive imaging findings are indeterminate, adrenal sampling such as EUS-FNA, percutaneous biopsy or adrenalectomy may be considered.	Current practice.	Current practice.	N/N	A/A

Clinical Questions	Recommendation	Facilitators/barriers to implementation	Target behaviour (B)	COM*	Possible intervention functions
Q2.2.6 For patients with NSCLC which of the following tests is most accurate for detecting brain metastases: MRI, CT, PFT-CT 7	Offer patients with signs/symptoms suggestive of brain metastases, contrast-enhanced CT of the head followed by contrast-enhanced MRI if normal or MRI as an initial test.	Possible slight increase in brain CT & MRI in some centres but small numbers.	N/A	N/A	N/A
	Offer MRI or CT of the head in patients with stage III NSCLC selected for treatment with curative intent.				
	Do not routinely offer imaging of the brain in patients with stage I and II NSCLC.				
Q2.2.7 For patients with NSCLC which of the following tests is most accurate for detecting	For patients with NSCLC with suspected bone metastasis, evaluation with PET-CT is recommended over bone scintigraphy or CT.	Current practice.	Current practice.	N/A	N/A
scan, CT, MRI, PET-CT?	Bone scintigraphy is not necessary when PET-CT has not shown bone metastases.				
Q2.2.8 In patients with limited- stage small-cell lung cancer (SCLC) on diagnostic CT, does PET-CT change management?	In patients with clinically limited-stage small-cell lung cancer (SCLC), PET-CT is suggested to exclude occult metastases.	Only affects a small numbers of patients. (as per Q.1) Clinicians must have access to PET-CT.	(as per Q2.2.1) If PET-CT is performed at hospitals that are not cancer centres then such hospitals will require the appropriate software to allow for results to be available for review at MDM in cancer centres.	Capability (physical) Opportunity (physical).	Training, Enablement, Environmental restructuring.
Q2.3.1 What is the efficacy of bronchoscopy in identifying lung cancer?	Patients with central lesions (within proximal one- third of the hemithorax) alone (considered reachable by standard bronchoscopy) who are otherwise fit should undergo flexible bronchoscopy in order to establish a histological or cytological diagnosis.	Current practice.	Current practice.	N/A	N/A
	Visible tumours should be sampled using more than one technique to optimise sensitivity.				
	Consider bronchoscopy to provide a diagnosis for peripheral lesions, although percutaneous FNA biopsy has a higher diagnostic yield.				

Clinical Questions	Recommendation	Facilitators/barriers to implementation	Target behaviour (B)	COM*	Possible intervention functions
Q2.3.2 In patients with mediastinal adenopathy: What is the efficacy of EBUS, EBUS/EUS and mediastinoscopy in the diagnosis of lung cancer?	Endoscopic assessment of the mediastinal lymph nodes with EBUS-TBNA with or without EUS-FNA should be offered to patients with suspected lung cancer prior to mediastinoscopy.	Current practice.	Current practice.	N/A	N/A
Q2.3.3 In patients with pleural effusion and suspected lung cancer, what is the efficacy of pleural sampling in the diagnosis of lung cancer?	In patients being considered for active therapy, pleural effusion should be investigated with pleural aspiration. If pleural fluid cytology is negative, and treatment will change depending on the nature of the pleural fluid, pleural biopsy using image guided or thoracoscopic biopsy is recommended.	Cancer centres should have access to thoracoscopy.			
Q2.3.4 What is the role of palliative interventions in the management of malignant airway obstruction?	In lung cancer patients with symptomatic (including breathlessness, haemoptysis and cough) malignant airway obstruction, any of the following therapeutic interventions may be considered: bronchoscopic debulking, turmour ablation modalities, airway stent placement and radiotherapy (external beam or brachytherapy).	Cancer centres should have access to appropriate interventions.			
Q2.4.1 a) What is the benefit of histopathological analysis for small-cell lung cancer (SCLC) vs. non-small cell lung cancer (NSCLC)? b) When should immunohistochemical analysis be performed? c) What is the best panel(s) of immunohistochemical (IHC) stains for NSCLC subtypes?	Distinguishing between small-cell carcinoma and non-small cell carcinoma of the lung is recommended. For challenging cases, a diagnostic panel of immunohistochemical assays is recommended to increase the diagnostic accuracy. In individuals with pathologically diagnosed non-small cell carcinoma (NSCLC), additional discrimination between adenocarcinoma and squamous cell carcinoma, even on cytologic material or small tissue samples is recommended.	Resource & time savings; if tissue used judiciously.	N/A	N/A	N/A
Q2.4.2 What is the efficacy of the following diagnostic tools in identifying and staging lung cancer? – ROSE at EBUS – Frozen section	Endobronchial ultrasound rapid on-site evaluation (EBUS ROSE) should be made available whenever resources permit. Consider intra-operative frozen section analysis in primary diagnosis when preoperative diagnosis is not available. In selected cases intra-operative frozen section analysis for staging may be considered.	Resources required – consultant/medical scientist and equipment – automated strainers, microscope.		Opportunity (physical).	Enablement, Environmental restructuring.

Clinical Questions	Recommendation	Facilitators/barriers to implementation	Target behaviour (B)	COM*	Possible intervention functions
Q2.4.3 In patients with NSCLC, how do cytological samples compare with tissue biopsy samples for tumour sub-typing, immunohistochemistry and predictive markers assessed by FISH or mutational analysis?	Cytology samples can be used to provide material suitable for both NSCLC sub-typing and some molecular analysis, provided the samples are appropriately handled and processed.	Cost savings.	Guides treatment. Fewer procedures.	N/A	N/A
Q2.4.4 What are optimal formalin fixation times for future molecular diagnostics?	Fixation times of 6 to 12 hours for small biopsy samples and 8 to 18 hours for larger surgical specimens generally give best results, although expert consensus opinion is that fixation times of 6 to 48 hours should give acceptable results.	Ensures that tissue is suitable for molecular analysis. Best use of material. Optimising DNA quality.	N/A	N/A	N/A
Q2.5.1 In patients with stage I & II non-small cell lung cancer (NSCLC) how does the extent of lung resection effect outcomes?	Q2.5.1 In patients with stage 1 For patients with clinical stage 1 and 11 non-small & 11 non-small cell lung cancer (NSCLC) who are medically fit for (NSCLC) how does the extent of surgical resection, a lobectomy rather than sublobar lung resection effect outcomes?	Current practice.	Current practice.	N/A	N/A
Q2.5.2 In patients with clinical stage I NSCLC undergoing lobectomy, how does video- assisted thoracic surgery (VATS) compare to thoracotomy?	For patients with clinical stage I NSCLC, video- assisted thoracic surgery (thoracoscopy) should be considered as an alternative to thoracotomy for anatomic pulmonary resection.	Longer operating time & higher capital costs. Reduced LOS. Identified higher operative times (median 173 min vs 143 min, P < .0001) for subjects having VATS resection (Paul et al., 2010).	Resources required.	Opportunity – physical.	Environmental restructuring, Enablement.

Clinical Questions	Recommendation	Facilitators/barriers to	Target behaviour (B)	com*	Possible intervention
Q2.5.3 Which pulmonary function tests should be used to determine fitness for resection?	Pulmonary function testing (spirometry, diffusion capacity, lung volume) should be performed in all patients being considered for surgical resection.	FEV/D _{Lco} – current practice.	Current practice.	Opportunity – physical Capability – physical.	Enablement Training.
	Postoperative predictive values should be calculated using broncho-pulmonary segment counting. If a mismatch is suspected ventilation perfusion scan should be performed.	Note: possible resource implications if it not current practice in a particular hospital (i.e. exercise assessment, low tech – free			
	Offer patients surgery if they have an FEV $_1$ & D $_{\rm Lco}$ within normal limits (postoperative predicted values >60%).	but resource implications – equipment & staffing, CPET – expensive test).			
	Patients with ppo-FEV ₁ and/or D _{ico} <30% should have formal cardiopulmonary exercise testing with measurement of VO ₂ max.				
	Patients with ppo-FEV ₁ and/or D _{ico} >30% and <60% – supplementary functional exercise assessments should be considered.				
	In patients with lung cancer being considered for surgery and a VO ₂ max <15mL/kg/min predicted, it is recommended that they are counselled about minimally invasive surgery, sublobar resections or non-operative treatment options for their lung cancer.				
Q2.5.4 In patients with lung cancer, how should non-pulmonary co-morbidity influence surgical selection?	Lung cancer surgery remains the best opportunity for potential cure in patients with significant co- morbidity. Efforts to contain and manage that risk should start with preoperative scoring (thoracoscore) and should ideally include attendance at a preoperative assessment clinic, where practical.	Current practice. Note: possible laboratory resources if extra nodes are dissected.	Current practice.	N/A	N/A
	Seek a cardiology review in patients with an active cardiac condition or ≥3 risk factors or poor cardiac functional capacity.				
	Offer surgery without further investigations to patients with ≤2 risk factors and good cardiac functional capacity.				
Q2.5.5 Should lung cancer surgery be offered to octogenarians?	Age >80 years should not automatically preclude surgery. Decisions should be based on oncological stage, co-morbidity and physiological testing.	Increase in referrals for surgery with a drop in referrals to other treatment modality groups.	Increase in ICU bed-time. Increase in resource input (pre- and post-operative).	Opportunity – physical Motivation – automatic.	Environmental restructuring, Enablement, Persuasion, Coercion, Modelling.

Clinical Questions	Recommendation	Facilitators/barriers to implementation	Target behaviour (B)	COM*	Possible intervention functions
Q2.5.6 In patients with NSCLC, what is the optimum surgical approach for? a) Multifocal tumours b) Synchronous tumours	Multificcal In patients with suspected or proven multifocal lung cancer (without mediastinal or extrapulmonary disease), curative-intent treatment may be considered, following discussion at a multidisciplinary team meeting. Synchronous In patients with suspected or proven synchronous primary lung cancers (without mediastinal or extrapulmonary disease), curative-intent treatment may be considered, following discussion at a multidisciplinary team meeting.	Multifocal – Extra surgical time. Extra radiology time. Possible radiology markers. Pathology implications. However, small numbers of patients.	Resources required.	Opportunity – physical.	Environmental restructuring, Enablement.
Q2.5.7 In patients with NSCLC, what is the optimal lymph node strategy at surgical resection?	Systematic mediastinal lymph node dissection should be performed in all patients having a lung cancer resection.	Current practice. Note: possible laboratory resources if extra nodes are dissected.	Current practice.	N/A	N/A
Q2.5.8 In patients with malignant pleural effusion associated with lung cancer, what is the best treatment strategy?	In patients with malignant pleural effusion whose symptoms improved following drainage, a number of options are available depending on performance status and documentation of lung re-expansion: – In patients with good performance status with lung re-expansion, thoracoscopy with talc pleurodesis is recommended. – In patients with non-expandable lung, tunnelled catheters may be considered. – In patients with poor performance status with lung re-expansion, options include: tunnelled pleural catheter, serial thoracentesis, or bedside talc pluerodesis.	Only affects a small number of patients.			1
Q2.5.9 Should surgical resection be considered in patients with NSCLC, who have treatable isolated brain or adrenal metastases at the time of presentation?	In patients with an isolated brain metastasis and a synchronous resectable primary NSCLC, sequential resection of the primary tumour and definitive treatment of the brain metastasis may be considered, following discussion at a multidisciplinary team meeting. In patients with an isolated adrenal metastasis and a synchronous resectable primary NSCLC, sequential resection of the primary tumour and definitive treatment of the adrenal metastasis may be considered, following discussion at a multidisciplinary team meeting.	Only affects a small number of patients.			

| Diagnosis, staging and treatment of patients with lung cancer

_

Clinical Questions	Recommendation	Facilitators/barriers to implementation	Target behaviour (B)	COM*	Possible intervention functions
Q2.5.10 Should surgical resection be considered as part of the multimodality treatment of patients with stage IIIa (N2) NSCLC?	Consider surgery as part of multimodality management in patients with T1– 3 N2 (non-fixed, non-bulky, single zone) M0 disease.	Very few patients – few resource implications. Only affects a small number of patients.		1	
Q2.5.11 In patients with small- cell lung cancer (SCLC) what is the role of surgery?	Patients with clinical stage I small-cell lung cancer (SCLC) and excellent performance status may be considered for resection following extensive staging investigation as part of a multimodality treatment regimen.	No major resource issues – small numbers. Only affects a small number of patients.			
Q 2.6.1:Preoperative chemoradiotheIn patients with non-smallFor patients with non-small ofIn patients with non-smallFor patients with non-small ofcell lung cancer (NSCLC)(NSCLC) who are suitable for(excluding pancoast turmours)(NSCLC) who are suitable forhaving curative surgery, howreoadjuvant chemoradiotherhaving curative surgery, howtrial.effective is preoperativePreoperative chemotherapy(neoadjuvant) chemotherapy orFollowing discussion at a mulchemoradiotherapy?meeting, appropriate patientiare suitable for surgery can bneoadjuvant chemotherapy.	Preoperative chemoradiotherapy For patients with non-small cell lung cancer (NSCLC) who are suitable for surgery, do not offer neoadjuvant chemoradiotherapy outside a clinical trial. Preoperative chemotherapy Following discussion at a multidisciplinary team meeting, appropriate patients with NSCLC who are suitable for surgery can be considered for neoadjuvant chemotherapy.	Neoadjuvant therapy is not a common approach in resectable patients – No impact.			
Q2.6.2 In patients with locally advanced NSCLC having radical radiotherapy, is concurrent chemoradiotherapy more effective than sequential chemoradiotherapy?	Concurrent chemoradiotherapy should be administered to patients with locally advanced NSCLC (suitable for radical radiotherapy) who have a good performance status (0-1).	Current Practice.			
Q2.6.3 In patients with locally advanced NSCLC having concurrent radical chem- radiotherapy, what is the effectiveness of: a) Induction (first-line) chemotherapy b) Consolidation chemotherapy	Induction or consolidation chemotherapy are not routinely recommended for patients receiving concurrent radical chemoradiotherapy.	Current Practice.			

Clinical Questions	Recommendation	Facilitators/barriers to implementation	Target behaviour (B)	COM*	Possible intervention functions
Q 2.6.4 In patients with advanced/ stage IV NSCLC what is the effectiveness of first-line chemotherapy and is there any evidence that particular regimens or drugs are more effective or less toxic than	Effectiveness of first-line cytotoxic chemotherapy In patients with a good performance status (PS) (i.e. Eastern Cooperative Oncology Group [ECOG] level 0 or 1) and stage IV non-small cell lung cancer (NSCLC), a platinum-based chemotherapy regimen is recommended based on the survival advantage and improvement in quality of life (QOL) over best supportive care (BSC).	Chemotherapy and EGFR TKI – Current practice. Crizotinib – 2% of advanced NSCLC (~19 patients a year) reimbursed by the NCCP.			1
others?	In patients with stage IV NSCLC and a good performance status, two-drug combination chemotherapy is recommended. The addition of a third cytotoxic chemo-therapeutic agent is not recommended because it provides no survival benefit and may be harmful.				
	In patients receiving palliative chemotherapy for stage IV NSCLC, it is recommended that the choice of chemotherapy is guided by histological type of NSCLC.				
	Bevacizumab plus platinum-based chemotherapy may be considered an option in carefully selected patients with advanced NSCLC. Risks and benefits should be discussed with patients before decision making.				
	Effectiveness of first-line targeted therapy First-line single agent EGFR tyrosine kinase inhibitors (TKI) should be offered to patients with sensitising EGFR mutation positive NSCLC. Adding combination chemotherapy to TKI confers no benefit and should not be used.				
	Crizotinib should be considered as first line therapy in patients with ALK positive NSCLC tumours.				

Clinical Questions	Recommendation	Facilitators/barriers to implementation	Target behaviour (B)	COM*	Possible intervention functions
Q2.6.5 In patients with advanced/ stage IV NSCLC is there any evidence for maintenance systemic therapy?	In patients with stage IV non-squamous NSCLC who do not experience disease progression and have a preserved performance status after 4-6 cycles of platinum-based therapy, treatment with maintenance pemetrexed is suggested.	Current practice.			
	In patients with stage IV NSCLC, switch maintenance therapy with chemotherapy agents other than pemetrexed has not demonstrated an improvement in overall survival and is not recommended.				
	In patients with stage IV NSCLC who do not experience disease progression after 4-6 cycles of platinum-based double agent chemotherapy, there is insufficient evidence to recommend maintenance therapy with erlotinib.				
Q2.6.6 In patients with advanced/stage IV NSCLC aged over 70, and/or with poor performance status, what is the effectiveness of	In elderly patients (age 70-79 years) with stage IV NSCLC who have good performance status and limited co-morbidities, treatment with a platinum doublet chemo-therapy is recommended.	Current Practice.	-	1	1
first-line therapy?	In patients with stage IV NSCLC with a performance status of 2, single agent chemotherapy may be considered. Platinum doublet chemotherapy is suggested over single agent chemotherapy if the performance status of 2 is cancer related rather than co-morbidity associated.				
	Unfit patients of any age (performance status (3- 4)) do not benefit from cytotoxic chemotherapy. However if patients harbor an EGFR or ALK mutation positive tumour, they may be considered for treatment with targeted therapies.				
Q2.6.7 In patients with advanced/ stage IV NSCLC how effective is second and third-line therapy in patients with NSCLC who progress and relapse?	Second-line systemic anticancer therapy (SACT) with single agent drugs should be considered. The choice of agent to be used should be made on a case by case basis taking into account previous treatment, mutation status and co-morbidities.	Current practice.			
Clinical Questions	Recommendation	Facilitators/barriers to implementation	Target behaviour (B)	COM *	Possible intervention functions
--	--	--	--	-------------------------	------------------------------------
Q2.6.8 Is there any evidence that particular regimens or drugs are more effective or less toxic than others for the first-line treatment of limited-stage and extensive-stage small-cell lung cancer?	In patients with either limited-stage or extensive- stage small-cell lung cancer (SCLC), platinum-based chemotherapy with either cisplatin or carboplatin plus etoposide is recommended. Non-platinum combinations can be considered in patients with limited-stage and extensive-stage SCLC	Current practice.		1	1
Q2.6.9 In patients with limited-stage and extensive-stage SCLC is there any role for maintenance chemotherapy?	There is no data to support maintenance therapy in limited-stage or extensive-stage SCLC.	Current practice.			
Q2.6.10 How effective is second-line systemic therapy in patients with SCLC who progress and relapse?	In patients with relapsed refractory SCLC, second-line therapy should be considered. Re-initiation of the previously administered first-line chemotherapy regimen is recommended in patients with SCLC who relapse greater than six months from completion of initial chemotherapy. Single agent chemotherapy should be considered in patients with primary refractory SCLC to maintain or improve quality of life.				1
Q2.7.1 In patients with non- small cell lung cancer (NSCLC) early stage disease (T1-T2 N0 M0) who are unfit for surgery, what is the effectiveness of stereotactic radiotherapy , standard radical radiotherapy and radiofrequency ablation?	Every patient with early stage disease (T1-T2 N0 M0) should be evaluated for fitness for surgery. If unfit for surgery, or surgery is declined, patients should be considered for radical treatment, preferably SBRT/ SABR or radical radiotherapy. Radiofrequency ablation (RFA) can be considered for patients with clinical stage la tumours who are not suitable for surgery following discussion at a multidisciplinary team meeting. (<i>Refer to clinical question 2.2.3</i>)	Potential new patient population in the future (~100-120 per year)	Increase in RFA resource may be required.	Opportunity (physical).	Environmental restructuring.

| Diagnosis, staging and treatment of patients with lung cancer

-

Clinical Questions	Recommendation	Facilitators/barriers to implementation	Target behaviour (B)	COM*	Possible intervention functions
Q2.7.2 In patients with stage I-III NSCLC undergoing radical external beam radiation therapy what is the role and effectiveness of the following: a) New technology (IMRT/4DCT- breathing adapted radiotherapy) b) Altered radiation fractionation schedules (Hyper and/or accelerated fractionation) c) Dose	In patients receiving combined chemoradiotherapy standard fractionation should be used to deliver a radical dose equivalent to 60 – 66 Gy. When a radical dose is considered 3D-CRT is the minimum technique to be used. When available, CHART can be considered in patients with non-operable stage I-III non-small cell lung cancer (NSCLC) not receiving chemotherapy.	New technology – cost of capital investment in 4DCT + training, increased complexity in treatment planning and workload per patient, 4D Treatment delivery and verification.	Resources required.	Opportunity (physical). Capability (physical).	Enablement, Environmental restructuring. Enablement Training.
Q2.7.3 In patients with stage III NSCLC undergoing radical three-dimensional conformal radiotherapy (3D-CRT): a) What are the most useful predictors of lung and oesophageal toxicity? b) What are the most useful measures to reduce toxicity: clinical/technical?	Perform three-dimensional treatment planning in patients undergoing radical thoracic radiotherapy. 4DCT should be performed where available. The dose volume parameters for the organs at risk (e.g. oesophagus, lung) need to be taken into account. It is prudent to limit V ₂₀ to \leq 30–35% and mean lung dose to \leq 20–23 Gy (with conventional fractionation) if one wants to limit the risk of radiation pneumonitis to \leq 20% in definitively treated patients with NSCLC.	4D CRT desirable as a planning option due to evidence suggesting reduced toxicity.	Access to 4D CRT Resources required.	Opportunity (physical).	Enablement, Environmental restructuring.
Q2.7.4 In patients with NSCLC post surgery, which groups should receive postoperative radiotherapy RT (PORT) or adjuvant RT? a) pN2 R0 b) any pN, R1, R2 resection b) any pN, R1, R2 resection	In patients with R1 resection, regardless of N status, postoperative radiotherapy (PORT) should be proposed sequentially delivering a radical dose of 60 Gy in 30 fractions. In patients with a pN2 stage and a complete resection there is no consensus to the benefit of PORT. If considered, PORT should be delivered at a dose of 50 Gy standard fractionation. PORT is not indicated in patients with a complete resection R0 and N0 disease.	4D IMRT should be performed in these patients where available.	Access to 4D CRT Resources required.	Opportunity (physical).	Enablement, Environmental restructuring.

180

Clinical Questions	Recommendation	Facilitators/barriers to implementation	Target behaviour (B)	COM*	Possible intervention functions
Q2.7.5 In patients with small- cell lung cancer (SCLC), what is the evidence supporting the role of radiotherapy (including technical parameters) a) Limited-stage prophylactic cranial irradiation (PCI) b) Limited-stage thoracic radiotherapy c) Extensive-stage thoracic radiotherapy d) Extensive-stage thoracic radiotherapy	Consolidation prophylactic cranial irradiation (PCI) is recommended in patients with limited-stage small-cell lung cancer (SCLC) having a response to chemoradiotherapy. In combined modality care, thoracic radiotherapy is recommended in patients with limited-stage SCLC and should be initiated as early as possible. Consolidation PCI is recommended in patients with extensive-stage SCLC having a response to chemotherapy. Consolidation thoracic radiotherapy may be considered in patients with extensive-stage SCLC having a response to chemotherapy.	Current practice, Consolidation thoracic RT - Future standard of care (pending peer reviewed publication).	Access to consolidation thoracic RT.		
Q2.8.1 Does the involvement of specialist palliative care result in better quality of life for patient or family, symptom control, or improved cost effectiveness compared with standard care alone (no involvement from specialist palliative care)?	Q2.8.1 Does the involvement of patients with stage IV non-small cell lung cancer specialist palliative care result in better quality of life for patient or family, symptom control, or improved cost effectiveness compared with standard care and standard oncological care at initial diagnosis.	No additional cost and resource implications. Early intervention of specialist PC services in LC patients will require expansion of existing PC services to meet need.	1		1
Q2.8.2 Who should comprise the palliative care multidisciplinary team?	Good practice point only	Yes – availability of allied health care professionals.	Resources required.	Oppurtunity – physical.	Enablement.

Appendix 8: Audit criteria and monitoring

It is important that both the implementation of the guideline and patient outcomes are audited to ensure that this guideline positively impacts on patient care.

The following audit criteria will be monitored as KPIs:

Diagnosis

For patients diagnosed with a primary lung cancer, clinical TNM stage is recorded at MDM in 95% of cases.

Time to treatment – Surgery

Patients diagnosed with a primary lung cancer where surgery is the first treatment shall be offered an appointment for surgery within 30 working days of the date of the decision to operate by the multidisciplinary team.

Time to treatment - Chemotherapy

For patients receiving their first cycle of systemic therapy for lung cancer in the day ward setting, the timeline between the date of receipt of the finalised treatment plan in the day ward and the administration of the first cycle of intravenous systemic therapy will not exceed 15 working days.

Time to treatment - Radiotherapy

Radiation therapy shall be carried out in a timely manner.

Time to treatment - Small-cell lung cancer

Patients diagnosed with a small cell lung cancer have treatment initiated within 10 working days of the histological diagnosis.

Surgery

For those patients with primary lung cancer who have a resection, pathological TNM stage is recorded.

Surgery

Volume and type of surgical resections for primary lung cancer will be recorded.

Surgery

For those patients with primary lung cancer who have a resection, intraoperative mediastinal lymph node staging is undertaken and recorded.

Pathology

Resection pathology reports include a standard set of prognostic indicators that will be reported by a designated pathologist according to the Royal College of Pathology minimum datasets.

The following national audits are recommended:

Radiology:

Recommendation 2.2.1.3

PET-CT is recommended for mediastinal and hilar lymph node staging in patients with potentially radically treatable non-small cell lung cancer (NSCLC) prior to invasive staging. **(C)**

Recommendation 2.2.6.3

Do **not** routinely offer imaging of the brain in patients with stage I and II NSCLC. (C)

Recommendation 2.2.7.2

Bone scintigraphy is not necessary when PET-CT has not shown bone metastases. (B)

Respiratory Medicine

Recommendation 2.3.1.2

Visible tumours should be sampled using more than one technique to optimise sensitivity. (B)

Pathology

Recommendation 2.4.2.1

Endobronchial ultrasound rapid on-site evaluation (EBUS ROSE) should be made available whenever resources permit. **(B)**

Medical Oncology

Recommendation 2.6.4.5

Effectiveness of first-line targeted therapy

First-line single agent EGFR tyrosine kinase inhibitors (TKI) should be offered to patients with sensitising EGFR mutation positive NSCLC. Adding combination chemotherapy to TKI confers no benefit and should not be used. **(A)**

Radiation Oncology

Recommendation 2.7.4.1

In patients with R1 resection, regardless of N status, postoperative radiotherapy (PORT) should be proposed sequentially delivering a radical dose of 60 Gy in 30 fractions. **(B)**

Palliative Care

Recommendation 2.8.1.1

Patients with stage IV non-small cell lung cancer (NSCLC) should be offered concurrent specialist palliative care and standard oncological care at initial diagnosis. **(B)**

Appendix 9: Glossary and abbreviations

Glossary

Definitions within the context of this document

Case Control Study	The observational epidemiologic study of persons with the disease (or other outcome variable) of interest and a suitable control (comparison, reference) group of persons without the disease. The relationship of an attribute to the disease is examined by comparing the diseased and nondiseased with regard to how frequently the attribute is present or, if quantitative, the levels of the attribute, in each of the groups. (CEBM website)
Case Series	A group or series of case reports involving patients who were given similar treatment. Reports of case series usually contain detailed information about the individual patients. This includes demographic information (for example, age, gender, ethnic origin) and information on diagnosis, treatment, response to treatment, and follow-up after treatment. (CEBM website)
Cohort study	The analytic method of epidemiologic study in which subsets of a defined population can be identified who are, have been, or in the future may be exposed or not exposed, or exposed in different degrees, to a factor or factors hypothesized to influence the probability of occurrence of a given disease or other outcome. The main feature of cohort study is observation of large numbers over a long period (commonly years) with comparison of incidence rates in groups that differ in exposure levels. (CEBM website)
Validity	The extent to which a variable or intervention measures what it is supposed to measure or accomplishes what it is supposed to accomplish. The internal validity of a study refers to the integrity of the experimental design. The external validity of a study refers to the appropriateness by which its results can be applied to non-study patients or populations. (CEBM website)
Meta-analysis	A systematic review may or may not include a meta-analysis, which is a quantitative summary of the results. (CEBM website)
Randomised trial	An epidemiological experiment in which subjects in a population are randomly allocated into groups, usually called study and control groups, to receive or not receive an experimental preventive or therapeutic procedure, maneuver, or intervention. The results are assessed by rigorous comparison of rates of disease, death, recovery, or other appropriate outcome in the study and control groups. (CEBM website)
Systematic review	The application of strategies that limit bias in the assembly, critical appraisal, and synthesis of all relevant studies on a specific topic. Systematic reviews focus on peer-reviewed publications about a specific health problem and use rigorous, standardised methods for selecting and assessing articles. A systematic review may or may not include a meta-analysis, which is a quantitative summary of the results. (CEBM website)

Abbreviations

The following abbreviations are used in this document:

The following abo	breviations are used in this document:
3DCRT	Three-Dimensional Conformal Radiotherapy
4DCT	Four-Dimensional Computed Tomography
AE	Adverse Event
AAH	Adenomatous Alveolar Hyperplasia
AGREE II	Appraisal of Guidelines for Research and Evaluation II
ALK	Anaplastic Lymphoma Kinase
ANC	Absolute Neutrophil Count
ASCO	American Society of Clinical Oncology
AUC	Area Under the Curve
BAC	Bronchioloalveolar Carcinoma
BED	Biologically Effective Dose
BH	Beaumont Hospital
BSC	Best Supportive Care
BTS	British Thoracic Society
CAV	Cyclophosphamide, Doxorubicin and Vincristine
СВ	Core Needle Biopsy
CDR	Clinical Decision Rule
CEA	Cost-Effectiveness Analysis
CEBM	Centre for Evidence-Based Medicine
CEO	Chief Executive Officer
CFRT	Conventionally Fractionated Radiotherapy
CHART	Continuous Hyperfractionated Accelerated Radiation Therapy
CI	Confidence Interval
CISH	Chromogenic In Situ Hybridisation
CK5	Cytokeratin 5
CK6	Cytokeratin 6
CNS	Central Nervous System
COM-B	Capability; Opportunity; Motivation; Behaviour
COPD	Chronic Obstructive Pulmonary Disease
CQ	Clinical Question
Crl	Credible Interval
CRT	Chemoradiotherapy
CSO	Central Statistics Office
СТ	Computed Tomography
CUH	Cork University Hospital
CXR	Chest X-ray
D _{LCO}	Diffusing Capacity of the Lung for Carbon Monoxide
DM	Distant Metastasis
DoH	Department of Health
DOR	Duration of Response
DP	Docetaxel, Cisplatin
DVH	Dose Volume Histogram
EBP	Evidence Based Practice
EBUS	Endobronchial Ultrasound
EBUS FNA	Endobronchial Ultrasound Fine Needle Aspiration

EBUS ROSE	Endobronchial Ultrasound Rapid On Site Evaluation
EBUS TBNA	Endobronchial Ultrasound Transbronchial Needle Aspiration
ECOG	Eastern Cooperative Oncology Group
ED	Extensive Disease
EGFR	Epidermal Growth Factor Receptor
EGFRM	Epidermal Growth Factor Receptor Mutation
ENB	Electromagnetic Navigation Bronchoscopy
ESMO	European Society for Medical Oncology
EU	European Union
EUS	Endoscopic Ultrasound
EUS-FNA	Endoscopic Ultrasound – Fine Needle Aspiration
FACT-L	Functional Assessment of Cancer Therapy-Lung
FEV ₁	Forced Expiratory Volume in 1 Second
FDG-PET	Fludeoxyglucose Positron Emission Tomography
FISH	Fluorescence In Situ Hybridisation
FN	False Negative
FNA	Fine Needle Aspiration
FP	False Positive
GBP	Great British Pound
GDG	Guideline Development Group
GGO	Ground Glass Opacity
GI	Gastrointestinal
GP	General Practioner
GUH	Galway University Hospital
HART	Hyperfractionated Accelerated Radiotherapy
HIQA	Health Information and Quality Authority
HR	Hazard Ratio
HSE	Health Service Executive
НТА	Health Technology Assessment
IANO	Irish Association for Nurses in Oncology
IASLC	International Association for the Study of Lung Cancer
ICERs	Incremental Cost Effectiveness Ratios
ICGP	Irish College of General Practitioners
ICU	Intensive Care Unit
IHC	Immunohistochemistry
IMRT	Intensity-Modulated Radiation Therapy
IPHA	Irish Pharmaceutical Healthcare Association
IQR	Intra-Quartile Range
IRC	Independent Review Committee
ISMO	Irish Society for Medical Oncologists
IV	Intravenous
KPI	Key Performance Indicator
LD	Limited Disease
LKB	Lyman–Kutcher–Burman
IRC	Independent Review Committee
LRP	Locoregional Progression
LRR	Locoregional Recurrence

LYG	Life Years Gained
MDM	Multidisciplinary Meeting
MDT	Multidisciplinary Team
MFLC	Multifocal Lung Cancer
MLD	Mean Lung Dose
MLND	Mediastinal Lymph Node Dissection
ММИН	Mater Misericordiae University Hospital
МРН	Mater Private Hospital
MRC	Medical Research Council
MRI	Magnetic Resonance Imaging
МТС	Mixed Treatment Comparison
NALA	National Adult Literacy Agency
NB	Navigational Broncoscopy
NCCN	National Comprehensive Cancer Network
NCCP	National Cancer Control Programme
NCHD	Non-Consultant Hospital Doctor
NCPE	National Centre for Pharmacoeconomics
NCRI	National Cancer Registry Ireland
NE	Non-Estimable
NHS	National Health Service
NICE	National Institute for Health and Care Excellence
NOS	Not Otherwise Specified
NPV	Negative Predictive Value
NSCLC	Non-Small Cell Lung Cancer
NTCP	Normal Tissue Complication Probability
OR	Odds Ratio
ORR	Objective Response Rate
OS	Overall Survival
PCI	Prophylactic Cranial Irradiation
PET	Positron Emission Tomography
PET-CT PFS	Positron Emission Tomography-Computed Tomography
PICO	Progression-Free Survival Population/Patient; Intervention; Comparison/Control; Outcome
PLT	Posterolateral Thoracotomy
PORT	Postoperative Radiotherapy
рро	Postoperative Predictive
PPP	Purchasing Power Parity
PPV	Positive Predictive Value
PS	Performance Status
PSM	Propensity Score Matching
ΡΤν	Planning Target Volume
QALY	Quality-Adjusted Life Year
QOL	Quality of Life
QUANTEC	Quantitative Analyses of Normal Tissue Effects in the Clinic
QUB	Queens University Belfast
RCPath	The Royal College of Pathologists
RCSI	Royal College of Surgeons in Ireland

RCT	Randomised Controlled Trial
R-EBUS	Radial Endobronchial Ultrasound
RECIST	Response Evaluation Criteria In Solid Tumours
RFA	Radiofrequency Ablation
ROC	Receiver Operating Characteristic
ROSE	Rapid On Site Evaluation
RR	Response Rate
RT	Radiation Therapy
SABR	Stereotactic Ablative Radiotherapy
SACT	Systemic Anticancer Therapy
SBRT	Stereotactic Ablative Radiation Therapy
SCLC	Small-Cell Lung Cancer
SFH	St. Francis Hospice
SIGN	Scottish Intercollegiate Guideline Network
SJH	St. James' Hospital
SPECT	Single-Photon Emission Computed Tomography
SUV	Standardised Uptake Volume
SVUH	St. Vincent's University Hospital
TBNA	Transbronchial Needle Aspiration
TCD	Trinity College Dublin
ТСР	Tumour Control Probability
ТКІ	Tyrosine Kinase Inhibitor
TL	Thoracoscopy
TLCO	Transfer Factor of Carbon Monoxide
TRT	Thoracic Radiotherapy
TTF-1	Thyroid Transcription Factor-1
TTNA	Transthoracic Needle Aspiration
TTNB	Transthoracic Needle Biopsy
UICC	Union for International Cancer Control
UHL	University Hospital Limerick
VATS	Video-Assisted Thoracoscopic Surgery
VB	Virtual Bronchoscopy
VO ₂ max	Maximal Oxygen Consumption
WHO	World Health Organisation

Appendix 10: Levels of Evidence & Grading Systems

1a	Systematic review (with homogeneity*) of Level 1 diagnostic studies; clinical decision rule (CDR") with 1b studies from different clinical centres.
1b	Validating** cohort study with good reference standards" ""; or CDR tested within one clinical centre.
1c	Absolute SpPins (specificity) and SnNouts (sensitivity)" ".
2a	Systematic review (with homogeneity*) of Level >2 diagnostic studies.
2b	Exploratory** cohort study with good reference standards; CDR after deviation, or validated only on split-samples§§§ or databases.
3a	Systematic review (with homogeneity*) of 3b and better studies.
3b	Non-consecutive study; or without consistently applied reference standards.
4	Case-control study, poor or non-independent reference standard.
5	Expert opinion without explicit critical appraisal, or based on physiology, bench research or first principles.

Table 13 Levels of Evidence for diagnostic studies (Oxford CEBM, 2009)

* By homogeneity we mean a systematic review that is free of worrisome variations (heterogeneity) in the directions and degrees of results between individual studies. Not all systematic reviews with statistically significant heterogeneity need be worrisome, and not all worrisome heterogeneity need be

statistically significant. As noted above, studies displaying worrisome heterogeneity should be tagged with a "-" at the end of their designated level.

" Clinical Decision Rule (these are algorithms or scoring systems that lead to a prognostic estimation or a diagnostic category).

****** Validating studies test the quality of a specific diagnostic test, based on prior evidence. An exploratory study collects information and trawls the data (e.g. using a regression analysis) to find which factors are 'significant'.

" " " Good reference standards are independent of the test, and applied blindly or objectively to applied to all patients. Poor reference standards are haphazardly applied, but still independent of the test. Use of a non-independent reference standard (where the 'test' is included in the 'reference', or where the 'testing' affects the 'reference') implies a lovel 4 study.

the 'testing' affects the 'reference') implies a level 4 study.

" " An "Absolute SpPin" is a diagnostic finding whose Specificity is so high that a positive result rules-in the diagnosis. An "Absolute SnNout" is a diagnostic finding whose Sensitivity is so high that a negative result rules-out the diagnosis.

§§§ Split-sample validation is achieved by collecting all the information in a single tranche, then artificially dividing this into "derivation" and "validation" samples.

Α	Consistent level 1 studies.
В	Consistent level 2 or 3 studies; or Extrapolations from level 1 studies.
С	Level 4 studies; or Extrapolations from level 2 or 3 studies.
D	Level 5 evidence; or Troublingly inconsistent or inconclusive studies of any level.

Table 14 Grades of recommendations for diagnostic studies (Oxford CEBM, 2009)

Extrapolations are where data is used in a situation that has potentially clinically important differences than the original study situation.

1++	High quality meta-analyses, systematic reviews of RCTs, or RCTs with a very low risk of bias.
1+	Well conducted meta-analyses, systematic reviews, or RCTs with a low risk of bias.
1-	Meta-analyses, systematic reviews, or RCTs with a high risk of bias.
2++	High quality systematic reviews of case control or cohort studies. High quality case control or cohort studies with a very low risk of confounding or bias and a high probability that the relationship is causal.
2+	Well conducted case control or cohort studies with a low risk of confounding or bias and a moderate probability that the relationship is causal.
2-	Case control or cohort studies with a high risk of confounding or bias and a significant risk that the relationship is not causal.
3	Non-analytic studies (e.g. case reports, case series).
4	Expert opinion.

Table 15 Levels of Evidence for interventional studies (SIGN grading system 1999-2012)

Table 16 Grades of recommendations for interventional studies (SIGN grading system 1999-2012)

A	At least one meta-analysis, systematic review, or RCT rated as 1++, and directly applicable to the target population; or A body of evidence consisting principally of studies rated as 1+, directly applicable to the target population, and demonstrating overall consistency of results.
В	A body of evidence including studies rated as 2++, directly applicable to the target population, and demonstrating overall consistency of results; or Extrapolated evidence from studies rated as 1++ or 1+.
C	A body of evidence including studies rated as 2+, directly applicable to the target population and demonstrating overall consistency of results; or Extrapolated evidence from studies rated as 2++
D	Evidence level 3 or 4; or Extrapolated evidence from studies rated as 2+

Note: the grade of recommendation does not necessarily reflect the clinical importance of the recommendation.

Good practice point

Recommended best practice based on the clinical experience of the GDG.

References

Section 1: Background

Department Of Health (DoH). 2017. National Cancer Strategy 2017-2026. Available: <u>http://health.gov.ie/wp-content/uploads/2017/07/National-Cancer-Strategy-2017-2026.pdf</u>

Department of Health and Children (DoHC). 2006. A Strategy for Cancer Control in Ireland. Available: <u>www.dohc.ie/</u> <u>publications/cancer_control_2006.html</u>

National Cancer Registry Ireland (NCRI) 2016. Cancer in Ireland 1994-2014: Annual Report of the National Cancer Registry. NCR, Cork, Ireland.

National Cancer Registry Ireland (NCRI). 2014. Cancer Projections for Ireland (2015 – 2040), NCR, Cork, Ireland

Section 2: National Clinical Guideline Recommendations

Section 2.2: Radiology

Akeson, P., Larsson, E. M., Kristoffersen, D. T., Jonsson, E. & Holtås, S. 1995. Brain metastases--comparison of gadodiamide injection-enhanced MR imaging at standard and high dose, contrast-enhanced CT and non-contrast-enhanced MR imaging. *Acta Radiol*, 36,300-6.

American College of Chest Physicians 2007. Diagnosis and management of lung cancer: ACCP guidelines. *Chest*. 132 (3 Suppl): 1s-19s.

Benamore, R., Shepherd, F. A., Leighl, N., Pintilie, M., Patel, M., Feld, R. & Herman, S. 2007. Does intensive follow-up alter outcome in patients with advanced lung cancer? *J Thorac Oncol*, 2, 273-81.

Birim, O., Kappetein, A. P., Stijnen, T. & Bogers, A. J. 2005. Meta-analysis of positron emission tomographic and computed tomographic imaging in detecting mediastinal lymph node metastases in nonsmall cell lung cancer. *Ann Thorac Surg*, 79, 375-82.

Blum, R., MacManus, M.P., Rischin, D., Michael, M., Ball, D. and Hicks, R.J., 2004. Impact of positron emission tomography on the management of patients with small-cell lung cancer: preliminary experience. *Am J Clin Oncol*, *27*(2), pp.164-171.

Boland, G. W., Dwamena, B. A., Jagtiani Sangwaiya, M., Goehler, A. G., Blake, M. A., Hahn, P. F., Scott, J. A. & Kalra, M. K. 2011. Characterization of adrenal masses by using FDG PET: a systematic review and meta-analysis of diagnostic test performance. *Radiology*, 259, 117-26.

Bodtger, U., Vilmann, P., Clementsen, P., Galvis, E., Bach, K. & Skov, B. G. 2009. Clinical impact of endoscopic ultrasound-fine needle aspiration of left adrenal masses in established or suspected lung cancer. *J Thorac Oncol*, *4*, 1485-9.

Bradley, J. D., Dehdashti, F., Mintun, M. A., Govindan, R., Trinkaus, K. & Siegel, B. A. 2004. Positron emission tomography in limited-stage small-cell lung cancer: a prospective study. *J Clin Oncol*, 22, 3248-54.

Brady, M. J., Thomas, J., Wong, T. Z., Franklin, K. M., Ho, L. M. & Paulson, E. K. 2009. Adrenal nodules at FDG PET/CT in patients known to have or suspected of having lung cancer: a proposal for an efficient diagnostic algorithm. *Radiology*, 250, 523-30.

Brierly, J. D., Gospodarowicz, M. K. & Wittekind, C. 2016. TNM Classification of Malignant Tumours, 8th Edition, Wiley-Blackwell.

Brink, I., Schumacher, T., Mix, M., Ruhland, S., Stoelben, E., Digel, W., Henke, M., Ghanem, N., Moser, E. & Nitzsche, E. U. 2004. Impact of [18F]FDG-PET on the primary staging of small-cell lung cancer. *Eur J Nucl Med Mol Imaging*, 31, 1614-20.

Calman, L., Beaver, K., Hind, D., Lorigan, P., Roberts, C. & Lloyd-Jones, M. 2011. Survival benefits from follow-up of patients with lung cancer: a systematic review and meta-analysis. *J Thorac Oncol*, *6*, 1993-2004.

Cheran, S. K., Herndon, J. E. & Patz, E. F. 2004. Comparison of whole-body FDG-PET to bone scan for detection of bone metastases in patients with a new diagnosis of lung cancer. *Lung Cancer*, 44, 317-25.

Cho, A. R., Lim, I., Na, I., Choe, D., Park, J., Kim, B., Cheon, G., Choi, C. & Lim, S. 2011. Evaluation of Adrenal Masses in Lung Cancer Patients Using F-18 FDG PET/CT. *Nucl Med Mol Imaging*, 45, 52-58.

Davis, P. C., Hudgins, P. A., Peterman, S. B. & Hoffman, J. C. 1991. Diagnosis of cerebral metastases: double-dose delayed CT vs contrast-enhanced MR imaging. *AJNR Am J Neuroradiol*, 12, 293-300.

de Langen, A. J., Raijmakers, P., Riphagen, I., Paul, M. A. & Hoekstra, O. S. 2006. The size of mediastinal lymph nodes and its relation with metastatic involvement: a meta-analysis. *Eur J Cardiothorac Surg*, 29, 26-9.

De Leyn, P., Lardinois, D., Van Schil, P. E., Rami-Porta, R., Passlick, B., Zielinski, M., Waller, D. A., Lerut, T. & Weder, W. 2007. ESTS guidelines for preoperative lymph node staging for non-small cell lung cancer. *Eur J Cardiothorac Surg*, 32, 1-8.

Detterbeck, F. C. & Jones, D. R. 2001. Table 5-5. Reliability of computed tomography staging of N1 (hilar) node involvement [table]. In: DETTERBECK, F. C., SOCINSKI, M. A. & ROSENMAN, J. G. (eds.) Diagnosis and treatment of lung cancer: an evidence-based guide for the practicing clinician. Philadelphia: W.B. Saunders.

Detterbeck, F. C., Jones, D. R. & Alden Parker, L. J. 2001a. Table 5-6. Reliability of computed tomography assessment of mediastinal nodes [table]. In: DETTERBECK, F. C. R. M., SOCINSKI, M. A. & ROSENMAN, J. G. (eds.) Diagnosis and treatment of lung cancer: an evidence-based guide for the practicing clinician. Philadelphia: W.B. Saunders.

Detterbeck, F. C., Jones, D. R. & Molina, P. L. 2001b. Table 6-9. Confirmability tests for suspected adrenal metastases in cancer patients [table]. In: DETTERBECK, F. C., RIVERA, M. P., SOKINSKI, M. A. & ROSENMAN, J. G. (eds.) Diagnosis and treatment of lung cancer: an evidence-based guide for the practicing clinician. Philadelphia: W.B. Saunders.

Detterbeck, F. C., Jones, D. R. & Molina, P. L. 2001c. Table 6-10. Confirmatory tests for benign adrenal adenoma [table]. In: DETTERBECK, F. C., RIVERA, M. P., SOKINSKI, M. A. & ROSENMAN, J. G. (eds.) Diagnosis and treatment of lung cancer: an evidence-based guide for the practicing clinician. Philadelphia: W.B. Saunders.

Detterbeck, F. C. & Rivera, M. P. 2001a. Table 4-8. Sensitivity of bronchoscopy in diagnosing lung cancer [table]. In: DETTERBECK, F. C., SOCINSKI, M. A. & ROSENMAN, J. G. (eds.) Diagnosis and treatment of lung cancer: an evidence-based guide for the practicing clinician. Philadelphia: W.B. Saunders.

Detterbeck, F. C. & Rivera, M. P. 2001b. Table 4-9. Reliability of needle biopsy of pulmonary nodules to assess the presence of cancer [table]. In: DETTERBECK, F. C., SOCINSKI, M. A. & ROSENMAN, J. G. (eds.) Diagnosis and treatment of lung cancer: an evidence-based guide for the practicing clinician. Philadelphia: W.B. Saunders.

DeWitt, J., Alsatie, M., LeBlanc, J., McHenry, L. & Sherman, S. 2007. Endoscopic ultrasound-guided fine-needle aspiration of left adrenal gland masses. *Endoscopy*, 39, 65-71.

Ferguson, J. and Walker, W., 2006. Developing a VATS lobectomy programme—can VATS lobectomy be taught?. *Eur J Cardiothorac Surg*, 29(5), pp.806-809.

Ferrigno, D. & Buccheri, G. 1994. Cranial computed tomography as a part of the initial staging procedures for patients with non-small-cell lung cancer. *Chest*, 106, 1025-9.

Glazer, G. M., Gross, B. H., Aisen, A. M., Quint, L. E., Francis, I. R. & Orringer, M. B. 1985. Imaging of the pulmonary hilum: a prospective comparative study in patients with lung cancer. *AJR Am J Roentgenol*, 145, 245-8.

Gould, M. K., Maclean, C. C., Kuschner, W. G., Rydzak, C. E. & Owens, D. K. 2001. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. *JAMA*, 285, 914-24.

Hatter, J., Kohman, L. J., Mosca, R. S., Graziano, S. L., Veit, L. J. & Coleman, M. 1994. Preoperative evaluation of stage I and stage II non-small cell lung cancer. *Ann Thorac Surg*, 58, 1738-41.

Hetzel, M., Arslandemir, C., König, H. H., Buck, A. K., Nüssle, K., Glatting, G., Gabelmann, A., Hetzel, J., Hombach, V. & Schirrmeister, H. 2003. F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-effectiveness, and impact on patient management. *J Bone Miner Res*, 18, 2206-14.

Hiraki, T., Gobara, H., Mimura, H., Matsui, Y., Toyooka, S. & Kanazawa, S. 2011. Percutaneous radiofrequency ablation of clinical stage I non-small cell lung cancer. *J Thorac Cardiovasc Surg*, 142, 24-30.

Hsia, T. C., Shen, Y. Y., Yen, R. F., Kao, C. H. & Changlai, S. P. 2002. Comparing whole body 18F-2-deoxyglucose positron emission tomography and technetium-99m methylene diophosphate bone scan to detect bone metastases in patients with non-small cell lung cancer. *Neoplasma*, 49, 267-71.

Ichinose, Y., Hara, N., Ohta, M., Motohiro, A., Maeda, T., Nobe, T. & Yagawa, K. 1989. Preoperative examination to detect distant metastasis is not advocated for asymptomatic patients with stages 1 and 2 non-small cell lung cancer. Preoperative examination for lung cancer. *Chest*, 96, 1104-9.

Kalemkerian, G. P. & Gadgeel, S. M. 2013. Modern staging of small cell lung cancer. J Natl Compr Canc Netw, 11, 99-104.

Kamel, E.M., Zwahlen, D., Wyss, M.T., Stumpe, K.D., von Schulthess, G.K. and Steinert, H.C., 2003. Whole-body 18F-FDG PET improves the management of patients with small cell lung cancer. *J Nucl Med*, 44(12), pp.1911-1917.

Kormas, P., Bradshaw, J. R. & Jeyasingham, K. 1992. Preoperative computed tomography of the brain in non-small cell bronchogenic carcinoma. *Thorax*, 47, 106-8.

Kumar, R., Xiu, Y., Yu, J. Q., Takalkar, A., El-Haddad, G., Potenta, S., Kung, J., Zhuang, H. & Alavi, A. 2004. 18F-FDG PET in evaluation of adrenal lesions in patients with lung cancer. *J Nucl Med*, 45, 2058-62.

Kut, V., Spies, W., Spies, S., Gooding, W. and Argiris, A., 2007. Staging and monitoring of small cell lung cancer using [18F] fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET). *Am J Clin Oncol*, 30(1), pp.45-50.

Lanuti, M., Sharma, A., Willers, H., Digumarthy, S. R., Mathisen, D. J. & Shepard, J. A. 2012. Radiofrequency ablation for stage I non-small cell lung cancer: management of locoregional recurrence. *Ann Thorac Surg*, 93, 921-7; discussion 927-88.

Lim, E., Baldwin, D., Beckles, M., Duffy, J., Entwisle, J., Faivre-Finn, C., Kerr, K., Macfie, A., McGuigan, J., Padley, S., Popat, S., Screaton, N., Snee, M., Waller, D., Warburton, C., Win, T., British Thoracic Society & Society for Cardiothoracic Surgery in Great Britain and Ireland. 2010. Guidelines on the radical management of patients with lung cancer. *Thorax*, 65 Suppl 3, iii1-27.

Lu, Y., Xie, D., Huang, W., Gong, H. & Yu, J. 2010. 18F-FDG PET/CT in the evaluation of adrenal masses in lung cancer patients. *Neoplasma*, 57, 129-34.

Mack, M. J., Hazelrigg, S. R., Landreneau, R. J. & Acuff, T. E. 1993. Thoracoscopy for the diagnosis of the indeterminate solitary pulmonary nodule. *Ann Thorac Surg*, 56, 825-30.

Mitruka, S., Landreneau, R. J., Mack, M. J., Fetterman, L. S., Gammie, J., Bartley, S., Sutherland, S. R., Bowers, C. M., Keenan, R. J., Ferson, P. F. & et al. 1995. Diagnosing the indeterminate pulmonary nodule: percutaneous biopsy versus thoracoscopy. *Surgery*, 118, 676-84.

Moore, S., Corner, J., Haviland, J., Wells, M., Salmon, E., Normand, C., Brada, M., O'Brien, M. & Smith, I. 2002. Nurse led follow up and conventional medical follow up in management of patients with lung cancer: randomised trial. *BMJ*, 325, 1145.

National Institute for Health and Care Excellence (NICE). 2011. CG 121: Lung cancer: The diagnosis and treatment of lung cancer. London: National Institute for Health and Care Excellence (NICE).

Roberts, J. R., Blum, M. G., Arildsen, R., Drinkwater, D. C., Jr., Christian, K. R., Powers, T. A. & Merrill, W. H. 1999. Prospective comparison of radiologic, thoracoscopic, and pathologic staging in patients with early non-small cell lung cancer. *Ann Thorac Surg*, 68, 1154-8.

Schmidt-Hansen, M., Baldwin, D. R., Hasler, E., Zamora, J., Abraira, V. & Roqué I Figuls, M. 2014. PET-CT for assessing mediastinal lymph node involvement in patients with suspected resectable non-small cell lung cancer. *Cochrane Database Syst Rev*, 11, CD009519.

Schreiber, G. & McCrory, D. C. 2003. Performance characteristics of different modalities for diagnosis of suspected lung cancer: summary of published evidence. *Chest*, 123, 115S-128S.

Scottish Intercollegiate Guidelines Network (SIGN). 2014. Management of lung cancer – a national clinical guideline. Edinburgh: SIGN. (SIGN publication no. 137).[Cited 09 Jun 2015]. Available: www.sign.ac.uk

Silvestri, G. A., Gonzalez, A. V., Jantz, M. A., Margolis, M. L., Gould, M. K., Tanoue, L. T., Harris, L. J. & Detterbeck, F. C. 2013. Methods for staging non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: american college of chest physicians evidence-based clinical practice guidelines. *Chest*, 143, e211S-e250S.

Silvestri, G. A., Gould, M. K., Margolis, M. L., Tanoue, L. T., McCrory, D., Toloza, E., Detterbeck, F. & Physicians, A. C. o. C. 2007. Noninvasive staging of non-small cell lung cancer: ACCP evidenced-based clinical practice guidelines (2nd edition). *Chest*, 132,1785-2015.

Song, J. W., Oh, Y. M., Shim, T. S., Kim, W. S., Ryu, J. S. & Choi, C. M. 2009. Efficacy comparison between (18)F-FDG PET/CT and bone scintigraphy in detecting bony metastases of non-small-cell lung cancer. *Lung Cancer*, 65, 333-8.

Sugiyama, T., Hirose, T., Hosaka, T., Kusumoto, S., Nakashima, M., Yamaoka, T., Okuda, K., Ohmori, T. & Adachi, M. 2008. Effectiveness of intensive follow-up after response in patients with small cell lung cancer. *Lung Cancer*, 59, 255-61

Sze, G., Shin, J., Krol, G., Johnson, C., Liu, D. & Deck, M. D. 1988. Intraparenchymal brain metastases: MR imaging versus contrast-enhanced CT. *Radiology*, 168, 187-94.

Takenaka, D., Ohno, Y., Matsumoto, K., Aoyama, N., Onishi, Y., Koyama, H., Nogami, M., Yoshikawa, T., Matsumoto, S. & Sugimura, K. 2009. Detection of bone metastases in non-small cell lung cancer patients: comparison of whole-body diffusion-weighted imaging (DWI), whole-body MR imaging without and with DWI, whole-body FDG-PET/CT, and bone scintigraphy. *J Magn Reson Imaging*, 30,298-308.

Taphoorn, M. J., Heimans, J. J., Kaiser, M. C., de Slegte, R. G., Crezee, F. C. & Valk, J. 1989. Imaging of brain metastases. Comparison of computerized tomography (CT) and magnetic resonance imaging (MRI). *Neuroradiology*, 31, 391-5.

Thomas, K. & Gould, M. 2016. Selection of modality for diagnosis and staging of patients with suspected non-small cell lung cancer. [Online]. UpToDate, Waltham, MA: Post TW (Ed). [Accessed December 23, 2016].

van Loon, J., Offermann, C., Bosmans, G., Wanders, R., Dekker, A., Borger, J., Oellers, M., Dingemans, A.M., van Baardwijk, A., Teule, J. and Snoep, G., 2008. 18 FDG-PET based radiation planning of mediastinal lymph nodes in limited disease small cell lung cancer changes radiotherapy fields: a planning study. *Radiotherapy and Oncology*, *87*(1), pp.49-54.

van Loon, J., De Ruysscher, D., Wanders, R., Boersma, L., Simons, J., Oellers, M., Dingemans, A.M.C., Hochstenbag, M., Bootsma, G., Geraedts, W. and Pitz, C., 2010. Selective nodal irradiation on basis of 18 FDG-PET scans in limited-disease small-cell lung cancer: a prospective study. *Int J Radiat Oncol Biol Phys*, *77*(2), pp.329-336.

Virgo, K. S., Mckirgan, L. W., Caputo, M. C., Mahurin, D. M., Chao, L. C., Caputo, N. A., Naunheim, K. S., Flye, M. W., Gillespie, K. N. & Johnson, F. E. 1995. Post-treatment management options for patients with lung cancer. *Ann Surg*, 222, 700-10.

Wain, J. C. 1993. Video-assisted thoracoscopy and the staging of lung cancer. Ann Thorac Surg, 56, 776-8.

Wang Memoli, J.S.W., Nietert, P.J. and Silvestri, G.A., 2012. Meta-analysis of guided bronchoscopy for the evaluation of the pulmonary nodule. *Chest*, 142(2), pp.385-393.

Welch, T. J., Sheedy, P. F., Stephens, D. H., Johnson, C. M. & Swensen, S. J. 1994. Percutaneous adrenal biopsy: review of a 10year experience. *Radiology*, 193, 341-4.

Yao, X., Gomes, M. M., Tsao, M. S., Allen, C. J., Geddie, W. & Sekhon, H. 2012. Fine-needle aspiration biopsy versus core-needle biopsy in diagnosing lung cancer: a systematic review. *Curr Oncol*, 19, e16-27.

Yokoi, K., Kamiya, N., Matsuguma, H., Machida, S., Hirose, T., Mori, K. & Tominaga, K. 1999. Detection of brain metastasis in potentially operable non-small cell lung cancer: a comparison of CT and MRI. *Chest*, 115, 714-9.

Younes, R. N., Gross, J. L. & Deheinzelin, D. 1999. Follow-up in lung cancer: how often and for what purpose? *Chest*, 115, 1494-9.

Zieren, H. U., Müller, J. M., Petermann, D. & Pichlmaier, H. 1994. [The effectiveness of standardized follow-up studies after resection of non-small cell bronchial carcinoma]. *Langenbecks Arch Chir*, 379, 299-306.

Section 2.3: Respiratory Medicine

Best, L. A., Munichor, M., Ben-Shakhar, M., Lemer, J., Lichtig, C. & Peleg, H. 1987. The contribution of anterior mediastinotomy in the diagnosis and evaluation of diseases of the mediastinum and lung. *Ann Thorac Surg*, 43, 78-81.

Bielsa, S., Panadés, M. J., Egido, R., Rue, M., Salud, A., Matías-Guiu, X., Rodríguez-Panadero, F. & Porcel, J. M. 2008. [Accuracy of pleural fluid cytology in malignant effusions]. [Abstract Only] *An Med Interna*, **25**, 173-7.

Bolliger, C. T., Mathur, P. N., Beamis, J. F., Becker, H. D., Cavaliere, S., Colt, H., Diaz-Jimenez, J. P., Dumon, J. F., Edell, E., Kovitz, K. L., Macha, H. N., Mehta, A. C., Marel, M., Noppen, M., Strausz, J. & Sutedja, T. G. 2002. ERS/ATS statement on interventional pulmonology. European Respiratory Society/American Thoracic Society. *Eur Respir J*, **19**, 356-73.

Brierly, J. D., Gospodarowicz, M. K. & Wittekind, C. 2016. TNM Classification of Malignant Tumours, 8th Edition, Wiley-Blackwell.

Dales, R. E., Stark, R. M. & Raman, S. 1990. Computed tomography to stage lung cancer. Approaching a controversy using meta-analysis. *Am Rev Respir Dis*, 141, 1096-101.

Detterbeck, F. C., Mazzone, P. J., Naidich, D. P. & Bach, P. B. 2013. Screening for lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. *Chest*, 143, e78S-92S.

Detterbeck, F. C. & Rivera, M. P. 2001a. Table 4-8. Sensitivity of bronchoscopy in diagnosing lung cancer [table]. *In:* Detterbeck, F. C., Socinski, M. A. & Rosenman, J. G. (eds.) Diagnosis and treatment of lung cancer: an evidence-based guide for the practicing clinician. Philadelphia: W.B. Saunders.

De Leyn, P., Dooms, C., Kuzdzal, J., Lardinois, D., Passlick, B., Rami-Porta, R., Turna, A., Van Schil, P., Venuta, F., Waller, D., Weder, W. & Zielinski, M. 2014. Revised ESTS guidelines for preoperative mediastinal lymph node staging for non-small-cell lung cancer. *Eur J Cardiothorac Surg*, **45**, 787-98.

Ernst, A., Feller-Kopman, D., Becker, H. D. & Mehta, A. C. 2004. Central airway obstruction. *Am J Respir Crit Care Med*, 169, 1278-97.

Ernst, A., Silvestri, G. A. & Johnstone, D. 2003. Interventional pulmonary procedures: Guidelines from the American College of Chest Physicians. *Chest*, 123, 1693-717.

Herth, F.J., Mathur, P.N., Finlay G. 2016. Clinical presentation, diagnostic evaluation, and management of central airway obstruction in adults. In: UpToDate, Post TW (Ed), UpToDate, WAltham, MA (Accessed on July 16, 2014).

Lim, E., Baldwin, D., Beckles, M., Duffy, J., Entwisle, J., Faivre-Finn, C., Kerr, K., Macfie, A., McGuigan, J., Padley, S., Popat, S., Screaton, N., Snee, M., Waller, D., Warburton, C., Win, T., British Thoracic Society & Society for Cardiothoracic Surgery in Great Britain and Ireland. 2010. Guidelines on the radical management of patients with lung cancer. *Thorax*, 65 Suppl 3, iii1-27.

Metintas, M., Ak, G., Dundar, E., Yildirim, H., Ozkan, R., Kurt, E., Erginel, S., Alatas, F. & Metintas, S. 2010. Medical thoracoscopy vs CT scan-guided Abrams pleural needle biopsy for diagnosis of patients with pleural effusions: a randomized, controlled trial. *Chest*, 137, 1362-8.

National Institute for Health and Care Excellence (NICE). 2011. CG 121: Lung cancer: The diagnosis and treatment of lung cancer. London: National Institute for Health and Care Excellence (NICE).

Sanchez de Cos, J., Hernandez, J. H., Lopez, M. F., Sanchez, S. P., Gratacos, A. R. & Porta, R. R. 2011. SEPAR guidelines for lung cancer staging. *Arch Bronconeumol*, 47, 454-65.

Schreiber, G. & McCrory, D. C. 2003. Performance characteristics of different modalities for diagnosis of suspected lung cancer: summary of published evidence. *Chest*, 123, 115S-128S.

195

Scottish Intercollegiate Guidelines Network (SIGN). 2014. Management of lung cancer – a national clinical guideline. Edinburgh: SIGN. (SIGN publication no. 137).[Cited 09 Jun 2015]. Available: www.sign.ac.uk

Seijo, L. M. & Sterman, D. H. 2001. Interventional pulmonology. N Engl J Med, 344, 740-9.

Sharples, L. D., Jackson, C., Wheaton, E., Griffith, G., Annema, J. T., Dooms, C., Tournoy, K. G., Deschepper, E., Hughes, V., Magee, L., Buxton, M. & Rintoul, R. C. 2012. Clinical effectiveness and cost-effectiveness of endobronchial and endoscopic ultrasound relative to surgical staging in potentially resectable lung cancer: results from the ASTER randomised controlled trial. *Health Technol Assess*, 16, 1-75, iii-iv.

Silvestri, G. A., Gonzalez, A. V., Jantz, M. A., Margolis, M. L., Gould, M. K., Tanoue, L. T., Harris, L. J. & Detterbeck, F. C. 2013. Methods for staging non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: american college of chest physicians evidence-based clinical practice guidelines. *Chest*, 143, e211S-e250S.

Stephens, K. E., Jr. & Wood, D. E. 2000. Bronchoscopic management of central airway obstruction. *J Thorac Cardiovasc Surg*, 119, 289-96.

Thomas, K. & Gould, M. 2016. Selection of modality for diagnosis and staging of patients with suspected non-small cell lung cancer. [Online]. UpToDate, Waltham, MA: Post TW (Ed). [Accessed December 23, 2016].

Yasufuku, K., Pierre, A., Darling, G., de Perrot, M., Waddell, T., Johnston, M., da Cunha Santos, G., Geddie, W., Boerner, S., Le, L. W. & Keshavjee, S. 2011. A prospective controlled trial of endobronchial ultrasound-guided transbronchial needle aspiration compared with mediastinoscopy for mediastinal lymph node staging of lung cancer. *J Thorac Cardiovasc Surg*, 142, 1393-400.

Section 2.4: Pathology

Asano, H., Toyooka, S., Tokumo, M., Ichimura, K., Aoe, K., Ito, S., Tsukuda, K., Ouchida, M., Aoe, M., Katayama, H., Hiraki, A., Sugi, K., Kiura, K., Date, H. & Shimizu, N. 2006. Detection of EGFR gene mutation in lung cancer by mutant-enriched polymerase chain reaction assay. *Clin Cancer Res*, **12**, 43-8.

Besse, B., Ropert, S. & Soria, J. C. 2007. Targeted therapies in lung cancer. Annals of Oncology, 18, ix135-ix142.

Bishop, J. A., Sharma, R. & Illei, P. B. 2010. Napsin A and thyroid transcription factor-1 expression in carcinomas of the lung, breast, pancreas, colon, kidney, thyroid, and malignant mesothelioma. *Hum Pathol*, 41, 20-5.

Borczuk, A. C., Shah, L., Pearson, G. D., Walter, K. L., Wang, L., Austin, J. H., Friedman, R. A. & Powell, C. A. 2004. Molecular signatures in biopsy specimens of lung cancer. *Am J Respir Crit Care Med*, 170, 167-74.

Brierly, J. D., Gospodarowicz, M. K. & Wittekind, C. 2016. TNM Classification of Malignant Tumours, 8th Edition, Wiley-Blackwell.

Camilo, R., Capelozzi, V. L., Siqueira, S. A. & Del Carlo Bernardi, F. 2006. Expression of p63, keratin 5/6, keratin 7, and surfactant-A in non-small cell lung carcinomas. *Hum Pathol*, 37, 542-6.

Chu, P. G. & Weiss, L. M. 2002. Expression of cytokeratin 5/6 in epithelial neoplasms: an immunohistochemical study of 509 cases. *Mod Pathol*, 15, 6-10.

Cohen, M. H., Gootenberg, J., Keegan, P. & Pazdur, R. 2007. FDA drug approval summary: bevacizumab (Avastin[®]) plus carboplatin and paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. *The Oncologist*, **12**,**713**-718.

College of American Pathologists. 2012. CAP Laboratory accreditation checklists [Online]. Available: http://www. cap.org/apps/cap.portal [Accessed April 11 2012].

Gordon, G. J., Richards, W. G., Sugarbaker, D. J., Jaklitsch, M. T. & Bueno, R. 2003. A prognostic test for adenocarcinoma of the lung from gene expression profiling data. *Cancer Epidemiol Biomarkers Prev*, **12**, 905-10.

Herbst, R. S. 2006. Toxicities of antiangiogenic therapy in non–small-cell lung cancer. *Clinical lung cancer*, 8, S23-S30.

Herbst, R. S. & Sandler, A. 2008. Bevacizumab and erlotinib: a promising new approach to the treatment of advanced NSCLC. *The Oncologist*, 13, 1166-1176.

Higashiyama, M., Kodama, K., Takami, K., Higaki, N., Nakayama, T. & Yokouchi, H. 2003. Intraoperative lavage cytologic analysis of surgical margins in patients undergoing limited surgery for lung cancer. *J Thorac Cardiovasc Surg*, 125, 101-7.

Johnson, D.H., Fehrenbacher, L., Novotny, W.F., Herbst, R.S., Nemunaitis, J.J., Jablons, D.M., Langer, C.J., DeVore, R.F., Gaudreault, J., Damico, L.A. and Holmgren, E., 2004. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. *J Clin Oncol*, 22(11), pp.2184-2191.

Kargi, A., Gurel, D. & Tuna, B. 2007. The diagnostic value of TTF-1, CK 5/6, and p63 immunostaining in classification of lung carcinomas. *Appl Immunohistochem Mol Morphol*, 15, 415-20.

Kaufmann, O. & Dietel, M. 2000. Thyroid transcription factor-1 is the superior immunohistochemical marker for pulmonary adenocarcinomas and large cell carcinomas compared to surfactant proteins A and B. *Histopathology*, 36, 8-16.

Khayyata, S., Yun, S., Pasha, T., Jian, B., McGrath, C., Yu, G., Gupta, P. & Baloch, Z. 2009. Value of P63 and CK5/6 in distinguishing squamous cell carcinoma from adenocarcinoma in lung fine-needle aspiration specimens. *Diagn Cytopathol*, 37, 178-83.

Kimura, H., Fujiwara, Y., Sone, T., Kunitoh, H., Tamura, T., Kasahara, K. & Nishio, K. 2006. EGFR mutation status in tumourderived DNA from pleural effusion fluid is a practical basis for predicting the response to gefitinib. *Br J Cancer*, 95, 1390-5.

Lam, W. K. & Watkins, D. N. 2007. Lung cancer: future directions. *Respirology*, 12, 471-477.

Lau, S. K., Luthringer, D. J. & Eisen, R. N. 2002. Thyroid transcription factor-1: a review. *Appl Immunohistochem Mol Morphol*, 10, 97-102.

Li, A. R., Chitale, D., Riely, G. J., Pao, W., Miller, V. A., Zakowski, M. F., Rusch, V., Kris, M. G. & Ladanyi, M. 2008. EGFR mutations in lung adenocarcinomas: clinical testing experience and relationship to EGFR gene copy number and immunohistochemical expression. *J Mol Diagn*, 10, 242-8.

Lim, E. H., Zhang, S. L., Li, J. L., Yap, W. S., Howe, T. C., Tan, B. P., Lee, Y. S., Wong, D., Khoo, K. L., Seto, K. Y., Tan, L., Agasthian, T., Koong, H. N., Tam, J., Tan, C., Caleb, M., Chang, A., Ng, A. & Tan, P. 2009. Using whole genome amplification (WGA) of low-volume biopsies to assess the prognostic role of EGFR, KRAS, p53, and CMET mutations in advanced-stage non-small cell lung cancer (NSCLC). *J Thorac Oncol*, 4, 12-21.

Lindeman, N. I., Cagle, P. T., Beasley, M. B., Chitale, D. A., Dacic, S., Giaccone, G., Jenkins, R. B., Kwiatkowski, D. J., Saldivar, J. S., Squire, J., Thunnissen, E. & Ladanyi, M. 2013. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. *J Thorac Oncol*, *8*, 823-59.

Loo, P. S., Thomas, S. C., Nicolson, M. C., Fyfe, M. N. & Kerr, K. M. 2010. Subtyping of undifferentiated non-small cell carcinomas in bronchial biopsy specimens. *J Thorac Oncol*, *5*, 442-7.

Marchevsky, A. M., Changsri, C., Gupta, I., Fuller, C., Houck, W. & McKenna, R. J. 2004. Frozen section diagnoses of small pulmonary nodules: accuracy and clinical implications. *Ann Thorac Surg*, **78**, 1755-9.

Miller, V. A., Riely, G. J., Zakowski, M. F., Li, A. R., Patel, J. D., Heelan, R. T., Kris, M. G., Sandler, A. B., Carbone, D. P., Tsao, A., Herbst, R. S., Heller, G., Ladanyi, M., Pao, W. & Johnson, D. H. 2008. Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib. *J Clin Oncol*, 26, 1472-8.

Motoi, N., Szoke, J., Riely, G. J., Seshan, V. E., Kris, M. G., Rusch, V. W., Gerald, W. L. & Travis, W. D. 2008. Lung adenocarcinoma: modification of the 2004 WHO mixed subtype to include the major histologic subtype suggests correlations between papillary and micropapillary adenocarcinoma subtypes, EGFR mutations and gene expression analysis. *Am J Surg Pathol*, 32, 810-27.

Nicholson, A. G., Gonzalez, D., Shah, P., Pynegar, M. J., Deshmukh, M., Rice, A. & Popat, S. 2010. Refining the diagnosis and EGFR status of non-small cell lung carcinoma in biopsy and cytologic material, using a panel of mucin staining, TTF-1, cytokeratin 5/6, and P63, and EGFR mutation analysis. *J Thorac Oncol*, 5, 436-41.

Oki, M., Saka, H., Kitagawa, C., Kogure, Y., Murata, N., Adachi, T. & Ando, M. 2013. Rapid on-site cytologic evaluation during endobronchial ultrasound-guided transbronchial needle aspiration for diagnosing lung cancer: a randomized study. *Respiration*, 85(6), pp.486-492.

Ordóñez, N. G. 2000. Value of thyroid transcription factor-1, E-cadherin, BG8, WT1, and CD44S immunostaining in distinguishing epithelial pleural mesothelioma from pulmonary and nonpulmonary adenocarcinoma. *Am J Surg Pathol*, 24, 598-606.

Otani, H., Toyooka, S., Soh, J., Yamamoto, H., Suehisa, H., Kobayashi, N., Gobara, H., Mimura, H., Kiura, K., Sano, Y., Kanazawa, S. & Date, H. 2008. Detection of EGFR gene mutations using the wash fluid of CT-guided biopsy needle in NSCLC patients. *J Thorac Oncol*, **3**, 472-6.

Rekhtman, N., Brandt, S. M., Sigel, C. S., Friedlander, M. A., Riely, G. J., Travis, W. D., Zakowski, M. F. & Moreira, A. L. 2011. Suitability of thoracic cytology for new therapeutic paradigms in non-small cell lung carcinoma: high accuracy of tumor subtyping and feasibility of EGFR and KRAS molecular testing. *J Thorac Oncol*, *6*, 451-8.

Rivera, M. P., Mehta, A. C. & American College of Chest Physicians 2007. Initial diagnosis of lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). *Chest*, 132, 131S-148S.

Rossi, G., Pelosi, G., Graziano, P., Barbareschi, M. & Papotti, M. 2009a. A reevaluation of the clinical significance of histological subtyping of non--small-cell lung carcinoma: diagnostic algorithms in the era of personalized treatments. *Int J Surg Pathol*, 17,206-18.

Rossi, G., Papotti, M., Barbareschi, M., Graziano, P. & Pelosi, G. 2009b. Morphology and a limited number of immunohistochemical markers may efficiently subtype non-small-cell lung cancer. *J Clin Oncol*, 27, e141-2; author reply e143-4.

Savic, S., Tapia, C., Grilli, B., Rufle, A., Bihl, M. P., de Vito Barascud, A., Herzog, M., Terracciano, L., Baty, F. & Bubendorf, L. 2008. Comprehensive epidermal growth factor receptor gene analysis from cytological specimens of non-small-cell lung cancers. *Br J Cancer*, 98, 154-60.

Scottish Intercollegiate Guidelines Network (SIGN). 2014. Management of lung cancer – a national clinical guideline. Edinburgh: SIGN. (SIGN publication no. 137).[Cited 09 Jun 2015]. Available: <u>www.sign.ac.uk</u>

Sigel, C. S., Moreira, A. L., Travis, W. D., Zakowski, M. F., Thornton, R. H., Riely, G. J. & Rekhtman, N. 2011. Subtyping of nonsmall cell lung carcinoma: a comparison of small biopsy and cytology specimens. *J Thorac Oncol*, 6, 1849-56.

Solomon, S. B., Zakowski, M. F., Pao, W., Thornton, R. H., Ladanyi, M., Kris, M. G., Rusch, V. W. & Rizvi, N. A. 2010. Core needle lung biopsy specimens: adequacy for EGFR and KRAS mutational analysis. *AJR Am J Roentgenol*, 194, 266-9.

Srinivasan, M., Sedmak, D. & Jewell, S. 2002. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. *Am J Pathol*, 161, 1961-71.

Suh, J., Rekhtman, N., Ladanyi, M. 2011. Testing of new IASLC/ATS/ERS criteria for diagnosis of lung adenocarcinoma (AD) in small biopsies: minimize immunohistochemistry (IHC) to maximize tissue for molecular studies. *Mod Pathol*. 24 (Supplement 1).

The Royal College of Pathologists (2016). Dataset for lung cancer histopathology reports. September 2016

Travis, W. D., Brambilla, E., Noguchi, M., Nicholson, A. G., Geisinger, K., Yatabe, Y., Powell, C. A., Beer, D., Riely, G., Garg, K., Austin, J. H., Rusch, V. W., Hirsch, F. R., Jett, J., Yang, P. C., Gould, M. & Society, A. T. 2011. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society: international multidisciplinary classification of lung adenocarcinoma: executive summary. *Proc Am Thorac Soc*, *8*, 381-5.

Travis, W. D. 2002. Pathology of lung cancer. Clin Chest Med, 23, 65-81, viii.

Trisolini, R., Cancellieri, A., Tinelli, C., Paioli, D., Scudeller, L., Casadei, G. P., Parri, S. F., Livi, V., Bondi, A., Boaron, M. & Patelli, M. 2011. Rapid on-site evaluation of transbronchial aspirates in the diagnosis of hilar and mediastinal adenopathy: a randomized trial. *Chest*, 139, 395-401.

Utsumi, T., Sawabata, N., Inoue, M. & Okumura, M. 2010. Optimal sampling methods for margin cytology examination following lung excision. *Interact Cardiovasc Thorac Surg*, 10, 434-6.

Watanabe, T., Okada, A., Imakiire, T., Koike, T. & Hirono, T. 2005. Intentional limited resection for small peripheral lung cancer based on intraoperative pathologic exploration. *Jpn J Thorac Cardiovasc Surg*, 53, 29-35.

Wolff, A. C., Hammond, M. E., Schwartz, J. N., Hagerty, K. L., Allred, D. C., Cote, R. J., Dowsett, M., Fitzgibbons, P. L., Hanna, W. M., Langer, A., McShane, L. M., Paik, S., Pegram, M. D., Perez, E. A., Press, M. F., Rhodes, A., Sturgeon, C., Taube, S. E., Tubbs, R., Vance, G. H., van de Vijver, M., Wheeler, T. M., Hayes, D. F. & Pathologists, A. S. o. C. O. C. o. A. 2007. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. *Arch Pathol Lab Med*, 131, 18-43.

World Health Organisation 2015. WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart. Fourth edition.

Wu, S. G., Gow, C. H., Yu, C. J., Chang, Y. L., Yang, C. H., Hsu, Y. C., Shih, J. Y., Lee, Y. C. & Yang, P. C. 2008. Frequent epidermal growth factor receptor gene mutations in malignant pleural effusion of lung adenocarcinoma. *Eur Respir J*, 32, 924-30.

Wu, M., Wang, B., Gil, J., Sabo, E., Miller, L., Gan, L. & Burstein, D. E. 2003. p63 and TTF-1 immunostaining. A useful marker panel for distinguishing small cell carcinoma of lung from poorly differentiated squamous cell carcinoma of lung. *Am J Clin Pathol*, 119, 696-702.

Yamada, S. & Kohno, T. 2004. Video-assisted thoracic surgery for pure ground-glass opacities 2 cm or less in diameter. *Ann Thorac Surg*, 77, 1911-5.

Yamato, Y., Tsuchida, M., Watanabe, T., Aoki, T., Koizumi, N., Umezu, H. & Hayashi, J. 2001. Early results of a prospective study of limited resection for bronchioloalveolar adenocarcinoma of the lung. *Ann Thorac Surg*, 71, 971-4.

Yatabe, Y., Mitsudomi, T. & Takahashi, T. 2002. TTF-1 expression in pulmonary adenocarcinomas. Am J Surg Pathol, 26, 767-73.

Yoshida, J., Nagai, K., Yokose, T., Nishimura, M., Kakinuma, R., Ohmatsu, H. & Nishiwaki, Y. 2005. Limited resection trial for pulmonary ground-glass opacity nodules: fifty-case experience. *J Thorac Cardiovasc Surg*, 129, 991-6.

Zhang, X., Zhao, Y., Wang, M., Yap, W. S. & Chang, A. Y. 2008. Detection and comparison of epidermal growth factor receptor mutations in cells and fluid of malignant pleural effusion in non-small cell lung cancer. *Lung Cancer*, 60, 175-82.

Zudaire, I., Lozano, M. D., Vazquez, M. F., Pajares, M. J., Agorreta, J., Pio, R., Zulueta, J. J., Yankelevitz, D. F., Henschke, C. I. & Montuenga, L. M. 2008. Molecular characterization of small peripheral lung tumors based on the analysis of fine needle aspirates. *Histol Histopathol*, 23, 33-40.

Section 2.5: Surgery

Abrahams, J. M., Torchia, M., Putt, M., Kaiser, L. R. & Judy, K. D. 2001. Risk factors affecting survival after brain metastases from non-small cell lung carcinoma: a follow-up study of 70 patients. *J Neurosurg*, 95, 595-600.

Allen, M. S., Darling, G. E., Pechet, T. T., Mitchell, J. D., Herndon, J. E., Landreneau, R. J., Inculet, R. I., Jones, D. R., Meyers, B. F., Harpole, D. H., Putnam, J. B., Rusch, V. W. & ACOSOG Z Study Group. 2006. Morbidity and mortality of major pulmonary resections in patients with early-stage lung cancer: initial results of the randomized, prospective ACOSOG Z0030 trial. *Ann Thorac Surg*, 81, 1013-9; discussion 1019-20.

Antakli, T., Schaefer, R. F., Rutherford, J. E. & Read, R. C. 1995. Second primary lung cancer. Ann Thorac Surg, 59, 863-6; discussion 867.

Benzo, R., Kelley, G.A., Recchi, L., Hofman, A. and Sciurba, F., 2007. Complications of lung resection and exercise capacity: a meta-analysis. *Respir Med*, 101(8), pp.1790-1797.

Billing, P. S., Miller, D. L., Allen, M. S., Deschamps, C., Trastek, V. F. & Pairolero, P. C. 2001. Surgical treatment of primary lung cancer with synchronous brain metastases. *J Thorac Cardiovasc Surg*, 122, 548-53.

Bonnette, P., Puyo, P., Gabriel, C., Giudicelli, R., Regnard, J. F., Riquet, M., Brichon, P. Y. & Thorax, G. 2001. Surgical management of non-small cell lung cancer with synchronous brain metastases. *Chest*, 119, 1469-75.

Brierly, J. D., Gospodarowicz, M. K. & Wittekind, C. 2016. TNM Classification of Malignant Tumours, 8th Edition, Wiley-Blackwell.

British Thoracic Society (BTS). 2001. BTS guidelines: guidelines on the selection of patients with lung cancer for surgery. *Thorax*, 56, 89-108.

Brunelli, A., Al Refai, M., Monteverde, M., Borri, A., Salati, M. & Fianchini, A. 2002. Stair climbing test predicts cardio-pulmonary complications after lung resection. *Chest*, 121, 1106-10.

Cattaneo, S. M., Park, B. J., Wilton, A. S., Seshan, V. E., Bains, M. S., Downey, R. J., Flores, R. M., Rizk, N. & Rusch, V. W. 2008. Use of video-assisted thoracic surgery for lobectomy in the elderly results in fewer complications. *Ann Thorac Surg*, 85, 231-5; discussion 235-6.

Darling, G.E., Allen, M.S., Decker, P.A., Ballman, K., Malthaner, R.A., Inculet, R.I., Jones, D.R., McKenna, R.J., Landreneau, R.J., Rusch, V.W. and Putnam, J.B., 2011. Randomized trial of mediastinal lymph node sampling versus complete lymphadenectomy during pulmonary resection in the patient with N0 or N1 (less than hilar) non–small cell carcinoma: Results of the American College of Surgery Oncology Group Z0030 Trial. *J Thorac Cardiovasc Surg*, 141(3), pp.662-670.

Davis, S., Crino, L., Tonato, M., Darwish, S., Pelicci, P. G. & Grignani, F. 1993. A prospective analysis of chemotherapy following surgical resection of clinical stage I-II small-cell lung cancer. *Am J Clin Oncol*, 16, 93-5.

Deschamps, C., Pairolero, P. C., Trastek, V. F. & Payne, W. S. 1990. Multiple primary lung cancers. Results of surgical treatment. *J Thorac Cardiovasc Surg*, 99, 769-77; discussion 777-8.

Detterbeck, F. C. 2001. Diagnosis and treatment of lung cancer: an evidence-based guide for the practicing clinician, Philadelphia; London, W.B. Saunders.

Detterbeck, F. C. & Gibson, C. J. 2008. Turning gray: the natural history of lung cancer over time. J Thorac Oncol, 3, 781-92.

Eagle, K. A., Rihal, C. S., Mickel, M. C., Holmes, D. R., Foster, E. D. & Gersh, B. J. 1997. Cardiac risk of noncardiac surgery: influence of coronary disease and type of surgery in 3368 operations. CASS Investigators and University of Michigan Heart Care Program. Coronary Artery Surgery Study. *Circulation*, 96, 1882-7.

Falcoz, P. E., Conti, M., Brouchet, L., Chocron, S., Puyraveau, M., Mercier, M., Etievent, J. P. & Dahan, M. 2007. The Thoracic Surgery Scoring System (Thoracoscore): risk model for in-hospital death in 15,183 patients requiring thoracic surgery. *J Thorac Cardiovasc Surg*, 133,325-32.

Ferguson, M. K., DeMeester, T. R., DesLauriers, J., Little, A. G., Piraux, M. & Golomb, H. 1985. Diagnosis and management of synchronous lung cancers. *J Thorac Cardiovasc Surg*, 89, 378-85.

Flores, R. M., Park, B. J., Dycoco, J., Aronova, A., Hirth, Y., Rizk, N. P., Bains, M., Downey, R. J. & Rusch, V. W. 2009. Lobectomy by video-assisted thoracic surgery (VATS) versus thoracotomy for lung cancer. *J Thorac Cardiovasc Surg*, 138, 11-8.

Fujimori, K., Yokoyama, A., Kurita, Y. & Terashima, M. 1997. A pilot phase 2 study of surgical treatment after induction chemotherapy for resectable stage I to IIIA small cell lung cancer. *Chest*, 111, 1089-93.

Furák, J., Troján, I., Szöke, T., Agócs, L., Csekeö, A., Kas, J., Svastics, E., Eller, J. & Tiszlavicz, L. 2005. Lung cancer and its operable brain metastasis: survival rate and staging problems. *Ann Thorac Surg*, 79, 241-7.

Getman, V., Devyatko, E., Dunkler, D., Eckersberger, F., End, A., Klepetko, W., Marta, G. & Mueller, M. R. 2004. Prognosis of patients with non-small cell lung cancer with isolated brain metastases undergoing combined surgical treatment. *Eur J Cardiothorac Surg*, 25, 1107-13.

Ginsberg, R. J. & Rubinstein, L. V. 1995. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung Cancer Study Group. *Ann Thorac Surg*, 60, 615-22; discussion 622-3.

Ginsberg, R. J. & Rubinstein, L. 1994. The comparison of limited resection to lobectomy for T1N0 non-small cell lung cancer: LCSG 821. *Chest*, 106, 318S-319S.

Girard, N., Cottin, V., Tronc, F., Etienne-Mastroianni, B., Thivolet-Bejui, F., Honnorat, J., Guyotat, J., Souquet, P. J. & Cordier, J. F. 2006. Chemotherapy is the cornerstone of the combined surgical treatment of lung cancer with synchronous brain metastases. *Lung Cancer*, 53, 51-8.

Girish, M., Trayner, E., Dammann, O., Pinto-Plata, V. and Celli, B., 2001. Symptom-limited stair climbing as a predictor of postoperative cardiopulmonary complications after high-risk surgery. *Chest*, 120(4), pp.1147-1151.

Howington, J. A., Blum, M. G., Chang, A. C., Balekian, A. A. & Murthy, S. C. 2013. Treatment of stage I and II non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. *Chest*, 143, e278S-313S.

Holden, D.A., Rice, T.W., Stelmach, K. and Meeker, D.P., 1992. Exercise testing, 6-min walk, and stair climb in the evaluation of patients at high risk for pulmonary resection. *Chest*, *102*(6), pp.1774-1779.

Iwasaki, A., Shirakusa, T., Yoshinaga, Y., Enatsu, S. & Yamamoto, M. 2004. Evaluation of the treatment of non-small cell lung cancer with brain metastasis and the role of risk score as a survival predictor. *Eur J Cardiothorac Surg*, 26, 488-93.

Izbicki, J. R., Passlick, B., Karg, O., Bloechle, C., Pantel, K., Knoefel, W. T. & Thetter, O. 1995. Impact of radical systematic mediastinal lymphadenectomy on tumor staging in lung cancer. *Ann Thorac Surg*, 59, 209-14.

Janes, S. M., Rahman, N. M., Davies, R. J. & Lee, Y. C. 2007. Catheter-tract metastases associated with chronic indwelling pleural catheters. *Chest*, 131, 1232-4.

Kakinuma, R., Ohmatsu, H., Kaneko, M., Kusumoto, M., Yoshida, J., Nagai, K., Nishiwaki, Y., Kobayashi, T., Tsuchiya, R., Nishiyama, H., Matsui, E., Eguchi, K. & Moriyama, N. 2004. Progression of focal pure ground-glass opacity detected by low-dose helical computed tomography screening for lung cancer. *J Comput Assist Tomogr*, 28, 17-23.

Kozower, B. D., Larner, J. M., Detterbeck, F. C. & Jones, D. R. 2013. Special treatment issues in non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. *Chest*, 143, e369S-99S. Available: <u>http://publications.chestnet.org/data/Journals/CHEST/926876/chest_143_5_suppl_e369S.pdf?resultClick=1</u>

Kim, T. J., Goo, J. M., Lee, K. W., Park, C. M. & Lee, H. J. 2009. Clinical, pathological and thin-section CT features of persistent multiple ground-glass opacity nodules: comparison with solitary ground-glass opacity nodule. *Lung Cancer*, 64, 171-8.

Lad, T., Piantadosi, S., Thomas, P., Payne, D., Ruckdeschel, J. & Giaccone, G. 1994. A prospective randomized trial to determine the benefit of surgical resection of residual disease following response of small cell lung cancer to combination chemotherapy. *Chest*, 106, 320S-323S.

Lee, J. G., Lee, C. Y., Kim, D. J., Chung, K. Y. & Park, I. K. 2008. Non-small cell lung cancer with ipsilateral pulmonary metastases: prognosis analysis and staging assessment. *Eur J Cardiothorac Surg*, 33, 480-4.

Lee, T. H., Marcantonio, E. R., Mangione, C. M., Thomas, E. J., Polanczyk, C. A., Cook, E. F., Sugarbaker, D. J., Donaldson, M. C., Poss, R., Ho, K. K., Ludwig, L. E., Pedan, A. & Goldman, L. 1999. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. *Circulation*, 100, 1043-9.

Light, R. W., Doelken, P. 2015. Diagnosis and management of pleural causes of unexpandable lung. In: UpToDate, Post TW (Ed), UpToDate, Waltham, MA. (Accessed on May 07, 2015)

Lim, E., Ali, A., Cartwright, N., Sousa, I., Chetwynd, A., Polkey, M., Geddes, D., Pepper, J., Diggle, P. & Goldstraw, P. 2006. Effect and duration of lung volume reduction surgery: mid-term results of the Brompton trial. *Thorac Cardiovasc Surg*, 54, 188-92.

Lim, E., Baldwin, D., Beckles, M., Duffy, J., Entwisle, J., Faivre-Finn, C., Kerr, K., Macfie, A., McGuigan, J., Padley, S., Popat, S., Screaton, N., Snee, M., Waller, D., Warburton, C., Win, T., British Thoracic Society & Society for Cardiothoracic Surgery in Great Britain and Ireland. 2010. Guidelines on the radical management of patients with lung cancer. *Thorax*, 65 Suppl 3, iii1-27.

Lim, E., Belcher, E., Yap, Y. K., Nicholson, A. G. & Goldstraw, P. 2008. The role of surgery in the treatment of limited disease small cell lung cancer: time to reevaluate. *J Thorac Oncol*, *3*, 1267-71.

Loewen, G.M., Watson, D., Kohman, L., Herndon, J.E., Shennib, H., Kernstine, K., Olak, J., Mador, M.J., Harpole, D., Sugarbaker, D. and Green, M., 2007. Preoperative exercise VO 2 measurement for lung resection candidates: results of Cancer and Leukemia Group B Protocol 9238. *J Thorac Oncol*, *2*(7), pp.619-625.

Martini, N. & Melamed, M. R. 1975. Multiple primary lung cancers. J Thorac Cardiovasc Surg, 70, 606-12.

Modi, A., Vohra, H. A. & Weeden, D. F. 2009. Does surgery for primary non-small cell lung cancer and cerebral metastasis have any impact on survival? *Interact Cardiovasc Thorac Surg*, 8, 467-73.

Morgan A.D.1989.Simple exercise testing. Respir Med, 83:383e7.

Moazami, N., Rice, T. W., Rybicki, L. A., Adelstein, D. J., Murthy, S. C., Decamp, M. M., Barnett, G. H., Chidel, M. A., Suh, J. H. & Blackstone, E. H. 2002. Stage III non-small cell lung cancer and metachronous brain metastases. *J Thorac Cardiovasc Surg*, 124, 113-22.

Mussi, A., Pistolesi, M., Lucchi, M., Janni, A., Chella, A., Parenti, G., Rossi, G. & Angeletti, C. A. 1996. Resection of single brain metastasis in non-small-cell lung cancer: prognostic factors. *J Thorac Cardiovasc Surg*, 112, 146-53.

Nakata, M., Sawada, S., Yamashita, M., Saeki, H., Kurita, A., Takashima, S. & Tanemoto, K. 2004. Surgical treatments for multiple primary adenocarcinoma of the lung. *Ann Thorac Surg*, 78, 1194-9.

Ng, C. S., Wan, S., Hui, C. W., Wan, I. Y., Lee, T. W., Underwood, M. J. & Yim, A. P. 2007. Video-assisted thoracic surgery lobectomy for lung cancer is associated with less immunochemokine disturbances than thoracotomy. *Eur J Cardiothorac Surg*, 31, 83-7.

Olsen, G. N., Bolton, J. W., Weiman, D. S. & Hornung, C. A. 1991. Stair climbing as an exercise test to predict the postoperative complications of lung resection. Two years' experience. *Chest*, 99, 587-90.

Pagni, S., Federico, J. A. & Ponn, R. B. 1997. Pulmonary resection for lung cancer in octogenarians. Ann Thorac Surg, 63, 785-9.

Park, J. H., Lee, K. S., Kim, J. H., Shim, Y. M., Kim, J., Choi, Y. S. & Yi, C. A. 2009. Malignant pure pulmonary ground-glass opacity nodules: prognostic implications. *Korean J Radiol*, 10, 12-20.

Pastorino, U., Bellomi, M., Landoni, C., De Fiori, E., Arnaldi, P., Picchio, M., Pelosi, G., Boyle, P. & Fazio, F. 2003. Early lung-cancer detection with spiral CT and positron emission tomography in heavy smokers: 2-year results. *Lancet*, 362, 593-7.

Paul, S., Altorki, N. K., Sheng, S., Lee, P. C., Harpole, D. H., Onaitis, M. W., Stiles, B. M., Port, J. L. & D'amico, T. A. 2010. Thoracoscopic lobectomy is associated with lower morbidity than open lobectomy: a propensity-matched analysis from the STS database. *J Thorac Cardiovasc Surg*, 139, 366-78.

Penel, N., Brichet, A., Prevost, B., Duhamel, A., Assaker, R., Dubois, F. & Lafitte, J. J. 2001. Pronostic factors of synchronous brain metastases from lung cancer. *Lung Cancer*, 33, 143-54.

Raz, D. J., Lanuti, M., Gaissert, H. C., Wright, C. D., Mathisen, D. J. & Wain, J. C. 2011. Outcomes of patients with isolated adrenal metastasis from non-small cell lung carcinoma. *Ann Thorac Surg*, 92, 1788-92; discussion 1793.

Ribet, M. & Dambron, P. 1995. Multiple primary lung cancers. *Eur J Cardiothorac Surg*, 9, 231-6.

Rosengart, T. K., Martini, N., Ghosn, P. & Burt, M. 1991. Multiple primary lung carcinomas: prognosis and treatment. *Ann Thorac Surg*, 52,773-8; discussion 778-9.

Rusch, V. W., Asamura, H., Watanabe, H., Giroux, D. J., Rami-Porta, R., Goldstraw, P. & Committee, M. o. I. S. 2009. The IASLC lung cancer staging project: a proposal for a new international lymph node map in the forthcoming seventh edition of the TNM classification for lung cancer. *J Thorac Oncol*, *4*, 568-77.

Rusch, V. W., Crowley, J., Giroux, D. J., Goldstraw, P., Im, J. G., Tsuboi, M., Tsuchiya, R. & Vansteenkiste, J. 2007. The IASLC Lung Cancer Staging Project: proposals for the revision of the N descriptors in the forthcoming seventh edition of the TNM classification for lung cancer. *J Thorac Oncol*, 2(7), 603-12.

Sabur, N. F., Chee, A., Stather, D. R., Maceachern, P., Amjadi, K., Hergott, C. A., Dumoulin, E., Gonzalez, A. V. & Tremblay, A. 2013. The impact of tunneled pleural catheters on the quality of life of patients with malignant pleural effusions. *Respiration*, 85, 36-42.

Schreiber, D., Rineer, J., Weedon, J., Vongtama, D., Wortham, A., Kim, A., Han, P., Choi, K. & Rotman, M. 2010. Survival outcomes with the use of surgery in limited-stage small cell lung cancer: should its role be re-evaluated? *Cancer*, 116, 1350-7.

Scottish Intercollegiate Guidelines Network (SIGN). 2014. Management of lung cancer – a national clinical guideline. Edinburgh: SIGN. (SIGN publication no. 137). [Cited 09 Jun 2015]. Available: <u>www.sign.ac.uk</u>

Sharkey, A. A., P. Anikin, V. Belcher, E. Kendall, S. Lim, E. Naidu, B. Parry, Wyn. Loubani, M. 2015. Thoracoscore and European Society Objective Score Fail to Predict Mortality in the UK. *World J Oncol*, *6*, 270-275..

Shaw, P. & Agarwal, R. 2004. Pleurodesis for malignant pleural effusions. *Cochrane Database Syst Rev*, CD002916.

Shepherd, F. A., Ginsberg, R. J., Patterson, G. A., Evans, W. K. & Feld, R. 1989. A prospective study of adjuvant surgical resection after chemotherapy for limited small cell lung cancer. A University of Toronto Lung Oncology Group study. *J Thorac Cardiovasc Surg*, 97,177-86.

Shirakusa, T., Tsutsui, M., Iriki, N., Matsuba, K., Saito, T., Minoda, S., Iwasaki, T., Hirota, N. & Kuono, J. 1989. Results of resection for bronchogenic carcinoma in patients over the age of 80. *Thorax*, 44, 189-91.

Singh, S.J., Morgan, M.D., Hardman, A.E., Rowe, C. and Bardsley, P.A., 1994. Comparison of oxygen uptake during a conventional treadmill test and the shuttle walking test in chronic airflow limitation. *Eur Respir J*, 7(11), pp.2016-2020.

Sudharshan, S., Ferraris, V. A., Mullett, T. & Ramaiah, C. 2011. Effectiveness of tunneled pleural catheter placement in patients with malignant pleural effusions. *Int J Angiol*, 20, 39-42.

Suzuki, K., Servais, E. L., Rizk, N. P., Solomon, S. B., Sima, C. S., Park, B. J., Kachala, S. S., Zlobinsky, M., Rusch, V. W. & Adusumilli, P. S. 2011. Palliation and pleurodesis in malignant pleural effusion: the role for tunneled pleural catheters. *J Thorac Oncol*, 6, 762-7.

Tanita, T., Tabata, T., Shibuya, J., Noda, M., Hoshikawa, Y., Ueda, S., Hasumi, T., Sakuma, T., Ashino, Y. & Ono, S. 1995. [Surgical treatment of lung cancer over 80 years of age: investigation from post operative complications]. *Kyobu Geka*, 48, 354-9.

Thornton, R. H., Miller, Z., Covey, A. M., Brody, L., Sofocleous, C. T., Solomon, S. B. & Getrajdman, G. I. 2010. Tunneled pleural catheters for treatment of recurrent malignant pleural effusion following failed pleurodesis. *J Vasc Interv Radiol*, 21, 696-700.

Travis, W. D., Garg, K., Franklin, W. A., Wistuba, I. I., Sabloff, B., Noguchi, M., Kakinuma, R., Zakowski, M., Ginsberg, M., Padera, R., Jacobson, F., Johnson, B. E., Hirsch, F., Brambilla, E., Flieder, D. B., Geisinger, K. R., Thunnisen, F., Kerr, K., Yankelevitz, D., Franks, T. J., Galvin, J. R., Henderson, D. W., Nicholson, A. G., Hasleton, P. S., Roggli, V., Tsao, M. S., Cappuzzo, F. & Vazquez, M. 2005. Evolving concepts in the pathology and computed tomography imaging of lung adenocarcinoma and bronchioloalveolar carcinoma. *J Clin Oncol*, 23, 3279-87.

Tremblay, A. & Michaud, G. 2006. Single-center experience with 250 tunnelled pleural catheter insertions for malignant pleural effusion. *Chest*, 129, 362-8.

Vallieres, E., Shepherd, F. A., Crowley, J., Van Houtte, P., Postmus, P. E., Carney, D., Chansky, K., Shaikh, Z. & Goldstraw, P. 2009. The IASLC Lung Cancer Staging Project: proposals regarding the relevance of TNM in the pathologic staging of small cell lung cancer in the forthcoming (seventh) edition of the TNM classification for lung cancer. *J Thorac Oncol*, 4, 1049-59.

van Bodegom, P. C., Wagenaar, S. S., Corrin, B., Baak, J. P., Berkel, J. & Vanderschueren, R. G. 1989. Second primary lung cancer: importance of long term follow up. *Thorax*, 44, 788-93.

Van Nostrand, D., Kjelsberg, M.O. and Humphrey, E.W., 1968. Preresectional evaluation of risk from pneumonectomy. *Surg Gynecol Ostet*, 127(2), pp.306-312.

Watanabe, A., Koyanagi, T., Ohsawa, H., Mawatari, T., Nakashima, S., Takahashi, N., Sato, H. & Abe, T. 2005. Systematic node dissection by VATS is not inferior to that through an open thoracotomy: a comparative clinicopathologic retrospective study. *Surgery*, 138, 510-7.

Weinmann, M., Jeremic, B., Toomes, H., Friedel, G. & Bamberg, M. 2003. Treatment of lung cancer in the elderly. Part I: non-small cell lung cancer. *Lung Cancer*, 39, 233-53.

Weksler, B., Nason, K. S., Shende, M., Landreneau, R. J. & Pennathur, A. 2012. Surgical resection should be considered for stage I and II small cell carcinoma of the lung. *Ann Thorac Surg*, 94, 889-93.

Whitson, B. A., Groth, S. S., Duval, S. J., Swanson, S. J. & Maddaus, M. A. 2008. Surgery for early-stage non-small cell lung cancer: a systematic review of the video-assisted thoracoscopic surgery versus thoracotomy approaches to lobectomy. *Ann Thorac Surg*, 86(6), 2008-16.

Win, T., Jackson, A., Groves, A.M., Wells, F.C., Ritchie, A.J., Munday, H. and Laroche, C.M., 2004. Relationship of shuttle walk test and lung cancer surgical outcome. *Eur J Cardiothorac Surg*, 26(6), pp.1216-1219.

Win, T., Jackson, A., Groves, A.M., Sharples, L.D., Charman, S.C. and Laroche, C.M., 2006. Comparison of shuttle walk with measured peak oxygen consumption in patients with operable lung cancer. *Thorax*, 61(1), pp.57-60.

Wroński, M., Arbit, E., Burt, M. & Galicich, J. H. 1995. Survival after surgical treatment of brain metastases from lung cancer: a follow-up study of 231 patients treated between 1976 and 1991. *J Neurosurg*, 83, 605-16.

Wu, Y., Huang, Z. F., Wang, S. Y., Yang, X. N. & Ou, W. 2002. A randomized trial of systematic nodal dissection in resectable non-small cell lung cancer. *Lung Cancer*, 36, 1-6.

Yang, X., Wang, S. & Qu, J. 2009. Video-assisted thoracic surgery (VATS) compares favorably with thoracotomy for the treatment of lung cancer: a five-year outcome comparison. *World J Surg*, 33, 1857-61.

Section 2.6: Medical Oncology

Ahn, J. S., Ahn, Y. C., Kim, J. H., Lee, C. G., Cho, E. K., Lee, K. C., Chen, M., Kim, D. W., Kim, H. K., Min, Y. J., Kang, J. H., Choi, J. H., Kim, S. W., Zhu, G., Wu, Y. L., Kim, S. R., Lee, K. H., Song, H. S., Choi, Y. L., Sun, J. M., Jung, S. H., Ahn, M. J. & Park, K. 2015. Multinational Randomized Phase III Trial With or Without Consolidation Chemotherapy Using Docetaxel and Cisplatin After Concurrent Chemoradiation in Inoperable Stage III Non-Small-Cell Lung Cancer: KCSG-LU05-04. *J Clin Oncol*, 33, 2660-6.

Amarasena, I. U., Chatterjee, S., Walters, J. A., Wood-Baker, R. & Fong, K. M. 2015. Platinum versus non-platinum chemotherapy regimens for small cell lung cancer. *Cochrane Database Syst Rev*, Cd006849.

Aupérin, A., Le Péchoux, C., Rolland, E., Curran, W. J., Furuse, K., Fournel, P., Belderbos, J., Clamon, G., Ulutin, H. C., Paulus, R., Yamanaka, T., Bozonnat, M. C., Uitterhoeve, A., Wang, X., Stewart, L., Arriagada, R., Burdett, S. & Pignon, J. P. 2010. Metaanalysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. *J Clin Oncol*, 28, 2181-90.

Barlesi, F., Scherpereel, A., Rittmeyer, A., Pazzola, A., Ferrer Tur, N., Kim, J. H., Ahn, M. J., Aerts, J. G., Gorbunova, V., Vikstrom, A., Wong, E. K., Perez-Moreno, P., Mitchell, L. & Groen, H. J. 2013. Randomized phase III trial of maintenance bevacizumab with or without pemetrexed after first-line induction with bevacizumab, cisplatin, and pemetrexed in advanced nonsquamous non-small-cell lung cancer: AVAPERL (MO22089). *J Clin Oncol*, 31, 3004-11.

Bezjak, A., Temin, S., Franklin, G., Giaccone, G., Govindan, R., Johnson, M. L., Rimner, A., Schneider, B. J., Strawn, J. & Azzoli, C. G. 2015. Definitive and Adjuvant Radiotherapy in Locally Advanced Non–Small-Cell Lung Cancer: American Society of Clinical Oncology Clinical Practice Guideline Endorsement of the American Society for Radiation Oncology Evidence-Based Clinical Practice Guideline. *J Clin Oncol*, 33, 2100-5.

Borghaei, H., Paz-Ares, L., Horn, L., Spigel, D. R., Steins, M., Ready, N. E., Chow, L. Q., Vokes, E. E., Felip, E., Holgado, E., Barlesi, F., Kohlhaufl, M., Arrieta, O., Burgio, M. A., Fayette, J., Lena, H., Poddubskaya, E., Gerber, D. E., Gettinger, S. N., Rudin, C. M., Rizvi, N., Crino, L., Blumenschein, G. R., Jr., Antonia, S. J., Dorange, C., Harbison, C. T., Graf Finckenstein, F. & Brahmer, J. R. 2015. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. *N Engl J Med*, 373, 1627-39.

Botrel, T. E., Clark, O., Clark, L., Paladini, L., Faleiros, E. & Pegoretti, B. 2011. Efficacy of bevacizumab (Bev) plus chemotherapy (CT) compared to CT alone in previously untreated locally advanced or metastatic non-small cell lung cancer (NSCLC): systematic review and meta-analysis. *Lung Cancer*, 74, 89-97.

Brahmer, J., Reckamp, K. L., Baas, P., Crino, L., Eberhardt, W. E., Poddubskaya, E., Antonia, S., Pluzanski, A., Vokes, E. E., Holgado, E., Waterhouse, D., Ready, N., Gainor, J., Aren Frontera, O., Havel, L., Steins, M., Garassino, M. C., Aerts, J. G., Domine, M., Paz-Ares, L., Reck, M., Baudelet, C., Harbison, C. T., Lestini, B. & Spigel, D. R. 2015. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. *N Engl J Med*, 373, 123-35.

Brierly, J. D., Gospodarowicz, M. K. & Wittekind, C. 2016. TNM Classification of Malignant Tumours, 8th Edition, Wiley-Blackwell.

Cao, C., Wang, J., Bunjhoo, H., Xu, Y. & Fang, H. 2012. Risk profile of bevacizumab in patients with non-small cell lung cancer: a meta-analysis of randomized controlled trials. *Acta Oncol*, 51, 151-6.

Cappuzzo, F., Ciuleanu, T., Stelmakh, L., Cicenas, S., Szczésna, A., Juhász, E., Esteban, E., Molinier, O., Brugger, W., Melezínek, I., Klingelschmitt, G., Klughammer, B., Giaccone, G. & Investigators, S. 2010. Erlotinib as maintenance treatment in advanced non-small-cell lung cancer: a multicentre, randomised, placebo-controlled phase 3 study. *Lancet Oncol*, 11, 521-9.

Chen, Y. M., Tsai, C. M., Fan, W. C., Shih, J. F., Liu, S. H., Wu, C. H., Chou, T. Y., Lee, Y. C., Perng, R. P. & Whang-Peng, J. 2012. Phase II randomized trial of erlotinib or vinorelbine in chemonaive, advanced, non-small cell lung cancer patients aged 70 years or older. *J Thorac Oncol*, 7, 412-8.

Ciuleanu, T., Brodowicz, T., Zielinski, C., Kim, J. H., Krzakowski, M., Laack, E., Wu, Y. L., Bover, I., Begbie, S., Tzekova, V., Cucevic, B., Pereira, J. R., Yang, S. H., Madhavan, J., Sugarman, K. P., Peterson, P., John, W. J., Krejcy, K. & Belani, C. P. 2009. Maintenance pemetrexed plus best supportive care versus placebo plus best supportive care for non-small-cell lung cancer: a randomised, double-blind, phase 3 study. *Lancet*, 374, 1432-40.

Ciuleanu, T., Stelmakh, L., Cicenas, S., Miliauskas, S., Grigorescu, A. C., Hillenbach, C., Johannsdottir, H. K., Klughammer, B. & Gonzalez, E. E. 2012. Efficacy and safety of erlotinib versus chemotherapy in second-line treatment of patients with advanced, non-small-cell lung cancer with poor prognosis (TITAN): a randomised multicentre, open-label, phase 3 study. *Lancet Oncol*, 13, 300-8.

Delbaldo, C., Michiels, S., Rolland, E., Syz, N., Soria, J. C., Le Chevalier, T. & Pignon, J. P. 2007. Second or third additional chemotherapy drug for non-small cell lung cancer in patients with advanced disease. *Cochrane Database Syst Rev*, Cd004569.

Di Maio, M., Chiodini, P., Georgoulias, V., Hatzidaki, D., Takeda, K., Wachters, F. M., Gebbia, V., Smit, E. F., Morabito, A., Gallo, C., Perrone, F. & Gridelli, C. 2009. Meta-analysis of single-agent chemotherapy compared with combination chemotherapy as second-line treatment of advanced non-small-cell lung cancer. *J Clin Oncol*, 27, 1836-43.

Garassino, M. C., Martelli, O., Broggini, M., Farina, G., Veronese, S., Rulli, E., Bianchi, F., Bettini, A., Longo, F., Moscetti, L., Tomirotti, M., Marabese, M., Ganzinelli, M., Lauricella, C., Labianca, R., Floriani, I., Giaccone, G., Torri, V., Scanni, A. & Marsonl, S. 2013. Erlotinib versus docetaxel as second-line treatment of patients with advanced non-small-cell lung cancer and wildtype EGFR tumours (TAILOR): a randomised controlled trial. *Lancet Oncol*, 14, 981-8.

Greenhalgh, J., Dwan, K., Boland, A., Bates, V., Vecchio, F., Dundar, Y., Jain, P. & Green, J. A. 2016. First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer. *Cochrane Database Syst Rev*, Cd010383.

Gronberg, B. H., Bremnes, R. M., Flotten, O., Amundsen, T., Brunsvig, P. F., Hjelde, H. H., Kaasa, S., Von Plessen, C., Stornes, F., Tollali, T., Wammer, F., Aasebo, U. & Sundstrom, S. 2009. Phase III study by the Norwegian lung cancer study group: pemetrexed plus carboplatin compared with gemcitabine plus carboplatin as first-line chemotherapy in advanced non-small-cell lung cancer. *J Clin Oncol*, 27, 3217-24.

Hanna, N., Bunn, P. A., Jr., Langer, C., Einhorn, L., Guthrie, T., Jr., Beck, T., Ansari, R., Ellis, P., Byrne, M., Morrison, M., Hariharan, S., Wang, B. & Sandler, A. 2006. Randomized phase III trial comparing irinotecan/cisplatin with etoposide/ cisplatin in patients with previously untreated extensive-stage disease small-cell lung cancer. *J Clin Oncol*, 24, 2038-43.

Hanna, N., Neubauer, M., Yiannoutsos, C., Mcgarry, R., Arseneau, J., Ansari, R., Reynolds, C., Govindan, R., Melnyk, A., Fisher, W., Richards, D., Bruetman, D., Anderson, T., Chowhan, N., Nattam, S., Mantravadi, P., Johnson, C., Breen, T., White, A., Einhorn, L., Group, H. O. & Oncology, U. 2008. Phase III study of cisplatin, etoposide, and concurrent chest radiation with or without consolidation docetaxel in patients with inoperable stage III non-small-cell lung cancer: the Hoosier Oncology Group and U.S. Oncology. *J Clin Oncol*, 26, 5755-60.

Hanna, N., Shepherd, F. A., Fossella, F. V., Pereira, J. R., De Marinis, F., Von Pawel, J., Gatzemeier, U., Tsao, T. C., Pless, M., Muller, T., Lim, H. L., Desch, C., Szondy, K., Gervais, R., Shaharyar, Manegold, C., Paul, S., Paoletti, P., EINHORN, L. & BUNN, P. A., JR. 2004. Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. *J Clin Oncol*, 22, 1589-97.

Herbst, R. S., Baas, P., Kim, D. W., Felip, E., Perez-Gracia, J. L., Han, J. Y., Molina, J., Kim, J. H., Arvis, C. D., Ahn, M. J., Majem, M., Fidler, M. J., De Castro, G., Jr., Garrido, M., Lubiniecki, G. M., Shentu, Y., Im, E., Dolled-Filhart, M. & Garon, E. B. 2016. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. *Lancet*, 387, 1540-50.

Herbst, R. S., O'Neill, V. J., Fehrenbacher, L., Belani, C. P., Bonomi, P. D., Hart, L., Melnyk, O., Ramies, D., Lin, M. & Sandler, A. 2007. Phase II study of efficacy and safety of bevacizumab in combination with chemotherapy or erlotinib compared with chemotherapy alone for treatment of recurrent or refractory non small-cell lung cancer. *J Clin Oncol*, 25, 4743-50.

Hermes, A., Bergman, B., Bremnes, R., Ek, L., Fluge, S., Sederholm, C., Sundstrom, S., Thaning, L., Vilsvik, J., Aasebo, U. & Sorenson, S. 2008. Irinotecan plus carboplatin versus oral etoposide plus carboplatin in extensive small-cell lung cancer: a randomized phase III trial. *J Clin Oncol*, 26, 4261-7.

Janne, P. A., Yang, J. C., Kim, D. W., Planchard, D., Ohe, Y., Ramalingam, S. S., Ahn, M. J., Kim, S. W., Su, W. C., Horn, L., Haggstrom, D., Felip, E., Kim, J. H., Frewer, P., Cantarini, M., Brown, K. H., Dickinson, P. A., Ghiorghiu, S. & Ranson, M. 2015. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. *N Engl J Med*, 372, 1689-99.

Johnson, D. H., Fehrenbacher, L., Novotny, W. F., Herbst, R. S., Nemunaitis, J. J., Jablons, D. M., Langer, C. J., Devore, R. F., Gaudreault, J., Damico, L. A., Holmgren, E. & Kabbinavar, F. 2004. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. *J Clin Oncol*, 22, 2184-91.

Kawaguchi, T., Ando, M., Asami, K., Okano, Y., Fukuda, M., Nakagawa, H., Ibata, H., Kozuki, T., Endo, T., Tamura, A., Kamimura, M., Sakamoto, K., Yoshimi, M., Soejima, Y., Tomizawa, Y., Isa, S., Takada, M., Saka, H. & Kubo, A. 2014. Randomized phase III trial of erlotinib versus docetaxel as second- or third-line therapy in patients with advanced non-small-cell lung cancer: Docetaxel and Erlotinib Lung Cancer Trial (DELTA). *J Clin Oncol*, 32, 1902-8.

Kelly, K., Chansky, K., Gaspar, L. E., Albain, K. S., Jett, J., Ung, Y. C., Lau, D. H., Crowley, J. J. & Gandara, D. R. 2008. Phase III trial of maintenance gefitinib or placebo after concurrent chemoradiotherapy and docetaxel consolidation in inoperable stage III non-small-cell lung cancer: SWOG S0023. *J Clin Oncol*, 26, 2450-6.

Kim, D. W., Mehra, R., Tan, D. S., Felip, E., Chow, L. Q., Camidge, D. R., Vansteenkiste, J., Sharma, S., De Pas, T., Riely, G. J., Solomon, B. J., Wolf, J., Thomas, M., Schuler, M., Liu, G., Santoro, A., Sutradhar, S., Li, S., Szczudlo, T., Yovine, A. & Shaw, A. T. 2016. Activity and safety of ceritinib in patients with ALK-rearranged non-small-cell lung cancer (ASCEND-1): updated results from the multicentre, open-label, phase 1 trial. *Lancet Oncol*, 17, 452-63.

Kulkarni, S., Vella, E., Coakley, N., Cheng, S., Gregg, R., Ung, Y. & Ellis, P. 2015. The use of systemic treatment in the maintenance of patients with non small cell lung cancer. Toronto (ON): Cancer Care Ontario, Program in Evidence-based Care Evidence-based Series.

Lara, P. N., Jr., Natale, R., Crowley, J., Lenz, H. J., Redman, M. W., Carleton, J. E., Jett, J., Langer, C. J., Kuebler, J. P., Dakhil, S. R., Chansky, K. & Gandara, D. R. 2009. Phase III trial of irinotecan/cisplatin compared with etoposide/ cisplatin in extensive-stage small-cell lung cancer: clinical and pharmacogenomic results from SWOG S0124. *J Clin Oncol*, 27, 2530-5.

Lima, A. B., Macedo, L. T. & Sasse, A. D. 2011. Addition of bevacizumab to chemotherapy in advanced non-small cell lung cancer: a systematic review and meta-analysis. *PLoS One*, *6*, e22681.

Mok, T. S., Wu, Y. L., Ahn, M. J., Garassino, M. C., Kim, H. R., Ramalingam, S. S., Shepherd, F. A., He, Y., Akamatsu, H., Theelen, W. S., Lee, C. K., Sebastian, M., Templeton, A., Mann, H., Marotti, M., Ghiorghiu, S., Papadimitrakopoulou, V. A. & Investigators, A. 2017. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. *N Engl J Med*, 376, 629-640.

Miller, V. A., Hirsh, V., Cadranel, J., Chen, Y. M., Park, K., Kim, S. W., Zhou, C., Su, W. C., Wang, M., Sun, Y., Heo, D. S., Crino, L., Tan, E. H., Chao, T. Y., Shahidi, M., Cong, X. J., Lorence, R. M. & Yang, J. C. 2012. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. *Lancet Oncol*, 13, 528-38.

National Comprehensive Cancer Network (NCCN). V8 2017. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) – Non-Small Cell Lung Cancer. Accessed [September 20, 2017].

National Institute for Health and Care Excellence (NICE). 2011. CG 121: Lung cancer: The diagnosis and treatment of lung cancer. London: National Institute for Health and Care Excellence (NICE).

Niho, S., Kunitoh, H., Nokihara, H., Horai, T., Ichinose, Y., Hida, T., Yamamoto, N., Kawahara, M., Shinkai, T., Nakagawa, K., Matsui, K., Negoro, S., Yokoyama, A., Kudoh, S., Kiura, K., Mori, K., Okamoto, H., Sakai, H., Takeda, K., Yokota, S., Saijo, N. & Fukuoka, M. 2012. Randomized phase II study of first-line carboplatin-paclitaxel with or without bevacizumab in Japanese patients with advanced non-squamous non-small-cell lung cancer. *Lung Cancer*, 76, 362-7.

Noda, K., Nishiwaki, Y., Kawahara, M., Negoro, S., Sugiura, T., Yokoyama, A., Fukuoka, M., Mori, K., Watanabe, K., Tamura, T., Yamamoto, S. & Saijo, N. 2002. Irinotecan plus cisplatin compared with etoposide plus cisplatin for extensive small-cell lung cancer. *N Engl J Med*, 346, 85-91.

NSCLC Collaborative Group 2010. Chemotherapy and supportive care versus supportive care alone for advanced non-small cell lung cancer. *Cochrane Database Syst Rev*, Cd007309.

NSCLC Meta-Analysis Collaborative Group 2014. Preoperative chemotherapy for non-small-cell lung cancer: a systematic review and meta-analysis of individual participant data. *Lancet*, 383, 1561-71.

O'Brien, M. E., Ciuleanu, T. E., Tsekov, H., Shparyk, Y., Cucevia, B., Juhasz, G., Thatcher, N., Ross, G. A., Dane, G. C. & Crofts, T. 2006. Phase III trial comparing supportive care alone with supportive care with oral topotecan in patients with relapsed small-cell lung cancer. *J Clin Oncol*, 24, 5441-7.

O'Rourke, N., Roqué I Figuls, M., Farré Bernadó, N. & Macbeth, F. 2010. Concurrent chemoradiotherapy in non-small cell lung cancer. *Cochrane Database Syst Rev*, CD002140.

Ou, S. H., Ahn, J. S., De Petris, L., Govindan, R., Yang, J. C., Hughes, B., Lena, H., Moro-Sibilot, D., Bearz, A., Ramirez, S. V., Mekhail, T., Spira, A., Bordogna, W., Balas, B., Morcos, P. N., Monnet, A., Zeaiter, A. & Kim, D. W. 2016. Alectinib in Crizotinib-Refractory ALK-Rearranged Non-Small-Cell Lung Cancer: A Phase II Global Study. *J Clin Oncol*, 34, 661-8.

Paz-Ares, L., De Marinis, F., Dediu, M., Thomas, M., Pujol, J. L., Bidoli, P., Molinier, O., Sahoo, T. P., Laack, E., Reck, M., Corral, J., Melemed, S., John, W., Chouaki, N., Zimmermann, A. H., Visseren-Grul, C. & Gridelli, C. 2012. Maintenance therapy with pemetrexed plus best supportive care versus placebo plus best supportive care after induction therapy with pemetrexed plus cisplatin for advanced non-squamous non-small-cell lung cancer (PARAMOUNT): a double-blind, phase 3, randomised controlled trial. *Lancet Oncol*, 13, 247-55.

Paz-Ares, L. G., De Marinis, F., Dediu, M., Thomas, M., Pujol, J. L., Bidoli, P., Molinier, O., Sahoo, T. P., Laack, E., Reck, M., Corral, J., Melemed, S., John, W., Chouaki, N., Zimmermann, A. H., Visseren-Grul, C. & Gridelli, C. 2013. PARAMOUNT: Final overall survival results of the phase III study of maintenance pemetrexed versus placebo immediately after induction treatment with pemetrexed plus cisplatin for advanced nonsquamous non-small-cell lung cancer. *J Clin Oncol*, 31, 2895-902.

Pilkington, G., Boland, A., Brown, T., Oyee, J., Bagust, A. & Dickson, R. 2015. A systematic review of the clinical effectiveness of first-line chemotherapy for adult patients with locally advanced or metastatic non-small cell lung cancer. *Thorax*, 70, 359-67.

Reck, M., Von Pawel, J., Fischer, J. R., Kortsik, C., Bohnet, S., Von Eiff, M., Koester, W., Thomas, M., Schnabel, P. & Deppermann, K. M. Erlotinib versus carboplatin/vinorelbine in elderly patients (age 70 or older) with advanced non-small cell lung carcinoma (NSCLC): A randomized phase II study of the German Thoracic Oncology Working Group. *J Clin Oncol*, 28(15_suppl), pp.7565-7565.

Reck, M., Von Pawel, J., Zatloukal, P., Ramlau, R., Gorbounova, V., Hirsh, V., Leighl, N., Mezger, J., Archer, V., Moore, N. & Manegold, C. 2009. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. *J Clin Oncol*, 27, 1227-34.

Rittmeyer, A., Gorbunova, V., Vikstrom, A., Scherpereel, A., Kim, J. H., Ahn, M. J., Chella, A., Chouaid, C., Campbell, A. K. & Barlesi, F. 2013. Health-related quality of life in patients with advanced nonsquamous non-small-cell lung cancer receiving bevacizumab or bevacizumab-plus-pemetrexed maintenance therapy in AVAPERL (MO22089). *J Thorac Oncol*, 8, 1409-16.

Sandler, A., Gray, R., Perry, M. C., Brahmer, J., Schiller, J. H., Dowlati, A., Lilenbaum, R. & Johnson, D. H. 2006. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. *N Engl J Med*, 355, 2542-50.

Santos, F. N., De Castria, T. B., Cruz, M. R. & Riera, R. 2015. Chemotherapy for advanced non-small cell lung cancer in the elderly population. *Cochrane Database Syst Rev*, Cd010463.

Scagliotti, G. V., Parikh, P., Von Pawel, J., Biesma, B., Vansteenkiste, J., Manegold, C., Serwatowski, P., Gatzemeier, U., Digumarti, R., Zukin, M., Lee, J. S., Mellemgaard, A., Park, K., Patil, S., Rolski, J., Goksel, T., De Marinis, F., Simms, L., Sugarman, K. P. & Gandara, D. 2008. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. *J Clin Oncol*, 26, 3543-51.

Scagliotti, G. V., Park, K., Patil, S., Rolski, J., Goksel, T., Martins, R., Gans, S. J., Visseren-Grul, C. & Peterson, P. 2009. Survival without toxicity for cisplatin plus pemetrexed versus cisplatin plus gemcitabine in chemonaïve patients with advanced non-small cell lung cancer: a risk-benefit analysis of a large phase III study. *Eur J Cancer*, 45, 2298-303.

Scottish Intercollegiate Guidelines Network (SIGN). 2014. Management of lung cancer – a national clinical guideline. Edinburgh: SIGN. (SIGN publication no. 137).[Cited 09 Jun 2015]. Available: www.sign.ac.uk

Shaw, A. T., Gandhi, L., Gadgeel, S., Riely, G. J., Cetnar, J., West, H., Camidge, D. R., Socinski, M. A., Chiappori, A., Mekhail, T., Chao, B. H., Borghaei, H., Gold, K. A., Zeaiter, A., Bordogna, W., Balas, B., Puig, O., Henschel, V. & Ou, S. H. 2016. Alectinib in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: a single-group, multicentre, phase 2 trial. *Lancet Oncol*, 17, 234-42.

Shaw, A. T., Kim, D. W., Mehra, R., Tan, D. S., Felip, E., Chow, L. Q., Camidge, D. R., Vansteenkiste, J., Sharma, S., De Pas, T., Riely, G. J., Solomon, B. J., Wolf, J., Thomas, M., Schuler, M., Liu, G., Santoro, A., Lau, Y. Y., Goldwasser, M., Boral, A. L. & Engelman, J. A. 2014. Ceritinib in ALK-rearranged non-small-cell lung cancer. *N Engl J Med*, 370, 1189-97.

Shaw, A. T., Kim, D. W., Nakagawa, K., Seto, T., Crinó, L., Ahn, M. J., De Pas, T., Besse, B., Solomon, B. J., Blackhall, F., Wu, Y. L., Thomas, M., O'byrne, K. J., Moro-Sibilot, D., Camidge, D. R., Mok, T., Hirsh, V., Riely, G. J., Iyer, S., Tassell, V., Polli, A., Wilner, K. D. & Jänne, P. A. 2013. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. *N Engl J Med*, 368, 2385-94.

Shepherd, F. A., Dancey, J., Ramlau, R., Mattson, K., Gralla, R., O'Rourke, M., Levitan, N., Gressot, L., Vincent, M., Burkes, R., Coughlin, S., Kim, Y. & Berille, J. 2000. Prospective randomized trial of docetaxel versus best supportive care in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy. *J Clin Oncol*, 18, 2095-103.

Shepherd, F. A., Rodrigues Pereira, J., Ciuleanu, T., Tan, E. H., Hirsh, V., Thongprasert, S., Campos, D., Maoleekoonpiroj, S., Smylie, M., Martins, R., Van Kooten, M., Dediu, M., Findlay, B., Tu, D., Johnston, D., Bezjak, A., Clark, G., Santabarbara, P. & Seymour, L. 2005. Erlotinib in previously treated non-small-cell lung cancer. *N Engl J Med*, 353, 123-32.

Solomon, B. J., Mok, T., Kim, D. W., Wu, Y. L., Nakagawa, K., Mekhail, T., Felip, E., Cappuzzo, F., Paolini, J., Usari, T., Iyer, S., Reisman, A., Wilner, K. D., Tursi, J. & Blackhall, F. 2014. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. *N Engl J Med*, 371, 2167-77.

Soria, J. C., Felip, E., Cobo, M., Lu, S., Syrigos, K., Lee, K. H., Goker, E., Georgoulias, V., Li, W., Isla, D., Guclu, S. Z., Morabito, A., Min, Y. J., Ardizzoni, A., Gadgeel, S. M., Wang, B., Chand, V. K. & Goss, G. D. 2015. Afatinib versus erlotinib as second-line treatment of patients with advanced squamous cell carcinoma of the lung (LUX-Lung 8): an open-label randomised controlled phase 3 trial. *Lancet Oncol*, 16, 897-907.

Soria, J. C., Mauguen, A., Reck, M., Sandler, A. B., Saijo, N., Johnson, D. H., Burcoveanu, D., Fukuoka, M., Besse, B., Pignon, J. P. & Group, M.-A. O. B. I. A. N. C. 2013. Systematic review and meta-analysis of randomised, phase II/III trials adding bevacizumab to platinum-based chemotherapy as first-line treatment in patients with advanced non-small-cell lung cancer. *Ann Oncol*, 24, 20-30.

Vokes, E. E., Herndon, J. E., Kelley, M. J., Cicchetti, M. G., Ramnath, N., Neill, H., Atkins, J. N., Watson, D. M., Akerley, W., Green, M. R. & B, C. A. L. G. 2007. Induction chemotherapy followed by chemoradiotherapy compared with chemoradiotherapy alone for regionally advanced unresectable stage III Non-small-cell lung cancer: Cancer and Leukemia Group B. *J Clin Oncol*, 25, 1698-704.

von Pawel, J., Jotte, R., Spigel, D. R., O'brien, M. E., Socinski, M. A., Mezger, J., Steins, M., Bosquée, L., Bubis, J., Nackaerts, K., Trigo, J. M., Clingan, P., Schütte, W., Lorigan, P., Reck, M., Domine, M., Shepherd, F. A., Li, S. & Renschler, M. F. 2014. Randomized phase III trial of amrubicin versus topotecan as second-line treatment for patients with small-cell lung cancer. *J Clin Oncol*, 32, 4012-9. Zhou, H., Zeng, C., Wei, Y., Zhou, J. & Yao, W. 2013. Duration of chemotherapy for small cell lung cancer: a meta-analysis. *PLoS One*, 8, e73805.

Zukin, M., Barrios, C. H., Pereira, J. R., Ribeiro, R. E. A., Beato, C. A., Do Nascimento, Y. N., Murad, A., Franke, F. A., Precivale, M., Araujo, L. H., Baldotto, C. S., Vieira, F. M., Small, I. A., Ferreira, C. G. & Lilenbaum, R. C. 2013. Randomized phase III trial of single-agent pemetrexed versus carboplatin and pemetrexed in patients with advanced non-small-cell lung cancer and Eastern Cooperative Oncology Group performance status of 2. *J Clin Oncol*, 31, 2849-53.

Section 2.7 Radiation Oncology

Ambrogi, M. C., Fanucchi, O., Dini, P., Melfi, F., Davini, F., Lucchi, M., Massimetti, G. & Mussi, A. 2015. Wedge resection and radiofrequency ablation for stage I nonsmall cell lung cancer. *Eur Respir J*, 45, 1089-97.

Arriagada, R., Bergman, B., Dunant, A., Le Chevalier, T., Pignon, J. P. & Vansteenkiste, J. 2004. Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. *N Engl J Med*, 350, 351-60.

Aupérin, A., Le Péchoux, C., Rolland, E., Curran, W. J., Furuse, K., Fournel, P., Belderbos, J., Clamon, G., Ulutin, H. C., Paulus, R., Yamanaka, T., Bozonnat, M. C., Uitterhoeve, A., Wang, X., Stewart, L., Arriagada, R., Burdett, S. & Pignon, J. P. 2010. Metaanalysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. *J Clin Oncol*, 28, 2181-90.

Belani, C. P., Wang, W., Johnson, D. H., Wagner, H., Schiller, J., Veeder, M., Mehta, M. & Group, E. C. O. 2005. Phase III study of the Eastern Cooperative Oncology Group (ECOG 2597): induction chemotherapy followed by either standard thoracic radiotherapy or hyperfractionated accelerated radiotherapy for patients with unresectable stage IIIA and B non-small-cell lung cancer. *J Clin Oncol*, 23, 3760-7.

Belderbos, J., Heemsbergen, W., Hoogeman, M., Pengel, K., Rossi, M. & Lebesque, J. 2005. Acute esophageal toxicity in non-small cell lung cancer patients after high dose conformal radiotherapy. *Radiother Oncol*, **75**, 157-64.

Bogart, J. A. & Aronowitz, J. N. 2005. Localized non-small cell lung cancer: adjuvant radiotherapy in the era of effective systemic therapy. *Clin Cancer Res*, **11**, 5004s-5010s.

Brierly, J. D., Gospodarowicz, M. K. & Wittekind, C. 2016. TNM Classification of Malignant Tumours, 8th Edition, Wiley-Blackwell.

Cole, A. J., O'Hare, J. M., McMahon, S. J., McGarry, C. K., Butterworth, K. T., McAleese, J., Jain, S., Hounsell, A. R., Prise, K. M., Hanna, G. G. & O'Sullivan, J. M. 2014. Investigating the potential impact of four-dimensional computed tomography (4DCT) on toxicity, outcomes and dose escalation for radical lung cancer radiotherapy. *Clin Oncol (R Coll Radiol),* 26, 142-50.

Crabtree, T. D., Denlinger, C. E., Meyers, B. F., El Naqa, I., Zoole, J., Krupnick, A. S., Kreisel, D., Patterson, G. A. & Bradley, J. D. 2010. Stereotactic body radiation therapy versus surgical resection for stage I non-small cell lung cancer. *J Thorac Cardiovasc Surg*, 140, 377-86.

De Ruysscher, D., van Baardwijk, A., Steevens, J., Botterweck, A., Bosmans, G., Reymen, B., Wanders, R., Borger, J., Dingemans, A. M., Bootsma, G., Pitz, C., Lunde, R., Geraedts, W., Oellers, M., Dekker, A. & Lambin, P. 2012. Individualised isotoxic accelerated radiotherapy and chemotherapy are associated with improved long-term survival of patients with stage III NSCLC: a prospective population-based study. *Radiother Oncol*, 102, 228-33.

Douillard, J. Y., Rosell, R., De Lena, M., Carpagnano, F., Ramlau, R., Gonzales-Larriba, J. L., Grodzki, T., Pereira, J. R., Le Groumellec, A., Lorusso, V., Clary, C., Torres, A. J., Dahabreh, J., Souquet, P. J., Astudillo, J., Fournel, P., Artal-Cortes, A., Jassem, J., Koubkova, L., His, P., Riggi, M. & Hurteloup, P. 2006. Adjuvant vinorelbine plus cisplatin versus observation in patients with completely resected stage IB-IIIA non-small-cell lung cancer (Adjuvant Navelbine International Trialist Association [ANITA]): a randomised controlled trial. *Lancet Oncol*, **7**, 719-27.

Fay, M., Tan, A., Fisher, R., Mac Manus, M., Wirth, A. & Ball, D. 2005. Dose-volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy. *Int J Radiat Oncol Biol Phys*, 61, 1355-63.

Fried, D. B., Morris, D. E., Poole, C., Rosenman, J. G., Halle, J. S., Detterbeck, F. C., Hensing, T. A. & Socinski, M. A. 2004. Systematic review evaluating the timing of thoracic radiation therapy in combined modality therapy for limited-stage small-cell lung cancer. *J Clin Oncol*, 22, 4837-45.

Gandara, D. R., Chansky, K., Albain, K. S., Leigh, B. R., Gaspar, L. E., Lara, P. N., Jr., Burris, H., Gumerlock, P., Kuebler, J. P., Bearden, J. D., 3rd, Crowley, J. & Livingston, R. 2003. Consolidation docetaxel after concurrent chemoradiotherapy in stage IIIB non-small-cell lung cancer: phase II Southwest Oncology Group Study S9504. *J Clin Oncol*, 21, 2004-10.

Gebitekin, C., Gupta, N. K., Satur, C. M., Olgac, G., Martin, P. G., Saunders, N. R. & Walker, D. R. 1994. Fate of patients with residual tumour at the bronchial resection margin. *Eur J Cardiothorac Surg*, 8, 339-42; discussion 342-4.

Ghiribelli, C., Voltolini, L., Paladini, P., Luzzi, L., Di Bisceglie, M. & Gotti, G. 1999. Treatment and survival after lung resection for non-small cell lung cancer in patients with microscopic residual disease at the bronchial stump. *Eur J Cardiothorac Surg*, 16, 555-9.

Graham, M. V., Purdy, J. A., Emami, B., Harms, W., Bosch, W., Lockett, M. A. & Perez, C. A. 1999. Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). *Int J Radiat Oncol Biol Phys*, 45, 323-9.

Grills, I. S., Mangona, V. S., Welsh, R., Chmielewski, G., McInerney, E., Martin, S., Wloch, J., Ye, H. & Kestin, L. L. 2010. Outcomes after stereotactic lung radiotherapy or wedge resection for stage I non-small-cell lung cancer. *J Clin Oncol*, 28, 928-35.

Haasbeek, C. J., Palma, D., Visser, O., Lagerwaard, F. J., Slotman, B. & Senan, S. 2012. Early-stage lung cancer in elderly patients: a population-based study of changes in treatment patterns and survival in the Netherlands. *Ann Oncol*, 23, 2743-7.

Heikkila, L., Harjula, A., Suomalainen, R. J., Mattila, P. & Mattila, S. 1986. Residual carcinoma in bronchial resection line. *Ann Chir Gynaecol*, 75, 151-4.

Huncharek, M. & McGarry, R. 2004. A meta-analysis of the timing of chest irradiation in the combined modality treatment of limited-stage small cell lung cancer. *Oncologist*, 9, 665-72.

Jassem, J. 2007. The role of radiotherapy in lung cancer: where is the evidence? *Radiother Oncol*, 83, 203-13.

Jeremic, B., Shibamoto, Y., Nikolic, N., Milicic, B., Milisavljevic, S., Dagovic, A., Aleksandrovic, J. & Radosavljevic-Asic, G. 1999. Role of radiation therapy in the combined-modality treatment of patients with extensive disease small-cell lung cancer: A randomized study. *J Clin Oncol*, **17**, 2092-9.

Kimura, H. & Yamaguchi, Y. 1994. Survival of noncuratively resected lung cancer. Lung Cancer, 11, 229-42.

Kong, F. M., Ten Haken, R., Eisbruch, A. & Lawrence, T. S. 2005. Non-small cell lung cancer therapy-related pulmonary toxicity: an update on radiation pneumonitis and fibrosis. *Semin Oncol*, 32, S42-54.

Kwa, S. L., Lebesque, J. V., Theuws, J. C., Marks, L. B., Munley, M. T., Bentel, G., Oetzel, D., Spahn, U., Graham, M. V., Drzymala, R. E., Purdy, J. A., Lichter, A. S., Martel, M. K. & Ten Haken, R. K. 1998. Radiation pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients. *Int J Radiat Oncol Biol Phys*, 42, 1-9.

Le Pechoux, C., Dunant, A., Senan, S., Wolfson, A., Quoix, E., Faivre-Finn, C., Ciuleanu, T., Arriagada, R., Jones, R., Wanders, R., Lerouge, D. & Laplanche, A. 2009. Standard-dose versus higher-dose prophylactic cranial irradiation (PCI) in patients with limited-stage small-cell lung cancer in complete remission after chemotherapy and thoracic radiotherapy (PCI 99-01, EORTC 22003-08004, RTOG 0212, and IFCT 99-01): a randomised clinical trial. *Lancet Oncol*, 10, 467-74.

Liao, Z. X., Komaki, R. R., Thames, H. D., Jr., Liu, H. H., Tucker, S. L., Mohan, R., Martel, M. K., Wei, X., Yang, K., Kim, E. S., Blumenschein, G., Hong, W. K. & Cox, J. D. 2010. Influence of technologic advances on outcomes in patients with unresectable, locally advanced non-small-cell lung cancer receiving concomitant chemoradiotherapy. *Int J Radiat Oncol Biol Phys*, 76, 775-81.

Liewald, F., Hatz, R. A., Dienemann, H. & Sunder-Plassmann, L. 1992. Importance of microscopic residual disease at the bronchial margin after resection for non-small-cell carcinoma of the lung. *J Thorac Cardiovasc Surg*, 104, 408-412.

Lim, E., Baldwin, D., Beckles, M., Duffy, J., Entwisle, J., Faivre-Finn, C., Kerr, K., Macfie, A., McGuigan, J., Padley, S., Popat, S., Screaton, N., Snee, M., Waller, D., Warburton, C., Win, T., British Thoracic Society & Society for Cardiothoracic Surgery in Great Britain and Ireland. 2010. Guidelines on the radical management of patients with lung cancer. *Thorax*, 65 Suppl 3, iii1-27.

Lu, H., Fang, L., Wang, X., Cai, J. & Mao, W. 2014. A meta-analysis of randomized controlled trials comparing early and late concurrent thoracic radiotherapy with etoposide and cisplatin/carboplatin chemotherapy for limited-disease small-cell lung cancer. *Mol Clin Oncol*, 2, 805-810.

Lung Cancer Disease Site Group (LCDSG). 2000. Altered fractionation of radical radiation therapy in the management of unresectable non-smallcell lung cancer. Ontario: Cancer Care Ontario Practice Guidelines Initiative

Machtay, M., Bae, K., Movsas, B., Paulus, R., Gore, E. M., Komaki, R., Albain, K., Sause, W. T. & Curran, W. J. 2012. Higher biologically effective dose of radiotherapy is associated with improved outcomes for locally advanced non-small cell lung carcinoma treated with chemoradiation: an analysis of the Radiation Therapy Oncology Group. *Int J Radiat Oncol Biol Phys*, 82,425-34.

Marks, L. B., Bentzen, S. M., Deasy, J. O., Kong, F. M., Bradley, J. D., Vogelius, I. S., El Naqa, I., Hubbs, J. L., Lebesque, J. V., Timmerman, R. D., Martel, M. K. & Jackson, A. 2010. Radiation dose-volume effects in the lung. *Int J Radiat Oncol Biol Phys*, 76, S70-6.

Massard, G., Doddoli, C., Gasser, B., Ducrocq, X., Kessler, R., Schumacher, C., Jung, G. M. & Wihlm, J. M. 2000. Prognostic implications of a positive bronchial resection margin. *Eur J Cardiothorac Surg*, **17**, 557-65.

Mauguen, A., Le Pechoux, C., Saunders, M. I., Schild, S. E., Turrisi, A. T., Baumann, M., Sause, W. T., Ball, D., Belani, C. P., Bonner, J. A., Zajusz, A., Dahlberg, S. E., Nankivell, M., Mandrekar, S. J., Paulus, R., Behrendt, K., Koch, R., Bishop, J. F., Dische, S., Arriagada, R., De Ruysscher, D. & Pignon, J. P. 2012. Hyperfractionated or accelerated radiotherapy in lung cancer: an individual patient data meta-analysis. *J Clin Oncol*, 30, 2788-97.

Milano, M. T., Constine, L. S. & Okunieff, P. 2007. Normal tissue tolerance dose metrics for radiation therapy of major organs. *Semin Radiat Oncol*, 17, 131-40.

National Institute for Health and Care Excellence (NICE). 2011. CG 121: Lung cancer: The diagnosis and treatment of lung cancer. London: National Institute for Health and Care Excellence (NICE).

Palma, D. A., Warner, A., Louie, A. V., Senan, S., Slotman, B. & Rodrigues, G. B. 2016. Thoracic Radiotherapy for Extensive Stage Small-Cell Lung Cancer: A Meta-Analysis. *Clin Lung Cancer*, **17**, 239-44.

Palma, D., Lagerwaard, F., Rodrigues, G., Haasbeek, C. & Senan, S. 2012. Curative treatment of Stage I non-small-cell lung cancer in patients with severe COPD: stereotactic radiotherapy outcomes and systematic review. *Int J Radiat Oncol Biol Phys*, 82, 1149-56.

Patel, S., Macdonald, O. K. & Suntharalingam, M. 2009. Evaluation of the use of prophylactic cranial irradiation in small cell lung cancer. *Cancer*, 115, 842-50.

Pignon, J. P., Arriagada, R., Ihde, D. C., Johnson, D. H., Perry, M. C., Souhami, R. L., Brodin, O., Joss, R. A., Kies, M. S. & Lebeau, B. 1992. A meta-analysis of thoracic radiotherapy for small-cell lung cancer. *N Engl J Med*, 327, 1618-24.

Pijls-Johannesma, M. C., De Ruysscher, D., Lambin, P., Rutten, I. & Vansteenkiste, J. F. 2005. Early versus late chest radiotherapy for limited stage small cell lung cancer. *Cochrane Database Syst Rev*, CD004700.

PORT Meta-analysis Trialists Group. 1998. Postoperative radiotherapy in non-small-cell lung cancer: systematic review and meta-analysis of individual patient data from nine randomised controlled trials. *Lancet*, 352, 257-63.

Qiao, X., Tullgren, O., Lax, I., Sirzen, F. & Lewensohn, R. 2003. The role of radiotherapy in treatment of stage I non-small cell lung cancer. *Lung Cancer*, 41, 1-11.

Roach, M., 3rd, Gandara, D. R., Yuo, H. S., Swift, P. S., Kroll, S., Shrieve, D. C., Wara, W. M., Margolis, L. & Phillips, T. L. 1995. Radiation pneumonitis following combined modality therapy for lung cancer: analysis of prognostic factors. *J Clin Oncol*, 13, 2606-12.

Rowell, N. P. & Williams, C. J. 2004. Radical radiotherapy for stage I/II non-small cell lung cancer in patients not sufficiently fit for or declining surgery (medically inoperable). *Cochrane Database Syst Rev*, Cd002935.

Saunders, M., Dische, S., Barrett, A., Harvey, A., Gibson, D. & Parmar, M. 1997. Continuous hyperfractionated accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small-cell lung cancer: a randomised multicentre trial. CHART Steering Committee. *Lancet*, 350,161-5.

Saunders, M., Dische, S., Barrett, A., Harvey, A., Griffiths, G. & Palmar, M. 1999. Continuous, hyperfractionated, accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small cell lung cancer: mature data from the randomised multicentre trial. CHART Steering committee. *Radiother Oncol*, 52, 137-48.

Sause, W., Kolesar, P., Taylor S, I. V., Johnson, D., Livingston, R., Komaki, R., Emami, B., Curran, W., Byhardt, R., Dar, A. R. & Turrisi, A. 2000. Final results of phase III trial in regionally advanced unresectable non-small cell lung cancer: Radiation Therapy Oncology Group, Eastern Cooperative Oncology Group, and Southwest Oncology Group. *Chest*, **117**, 358-64.

Scagliotti, G. V., Fossati, R., Torri, V., Crino, L., Giaccone, G., Silvano, G., Martelli, M., Clerici, M., Cognetti, F. & Tonato, M. 2003. Randomized study of adjuvant chemotherapy for completely resected stage I, II, or IIIA non-small-cell Lung cancer. *J Natl Cancer Inst*, 95, 1453-61.

Schultheiss, T. E., Kun, L. E., Ang, K. K. & Stephens, L. C. 1995. Radiation response of the central nervous system. *Int J Radiat Oncol Biol Phys*, 31, 1093-112.

Scottish Intercollegiate Guidelines Network (SIGN). 2014. Management of lung cancer – a national clinical guideline. Edinburgh: SIGN. (SIGN publication no. 137).[Cited 09 Jun 2015]. Available: www.sign.ac.uk

Senan, S., De Ruysscher, D., Giraud, P., Mirimanoff, R. & Budach, V. 2004. Literature-based recommendations for treatment planning and execution in high-dose radiotherapy for lung cancer. *Radiother Oncol*, **71**, 139-46.

Senthi, S., Haasbeek, C. J., Slotman, B. J. & Senan, S. 2013. Outcomes of stereotactic ablative radiotherapy for central lung tumours: a systematic review. *Radiother Oncol*, 106, 276-82.

Senthi, S., Lagerwaard, F. J., Haasbeek, C. J., Slotman, B. J. & Senan, S. 2012. Patterns of disease recurrence after stereotactic ablative radiotherapy for early stage non-small-cell lung cancer: a retrospective analysis. *Lancet Oncol*, 13, 802-9.

Slotman, B., Faivre-Finn, C., Kramer, G., Rankin, E., Snee, M., Hatton, M., Postmus, P., Collette, L., Musat, E. & Senan, S. 2007. Prophylactic cranial irradiation in extensive small-cell lung cancer. *N Engl J Med*, 357, 664-72.

Slotman, B. J., Mauer, M. E., Bottomley, A., Faivre-Finn, C., Kramer, G. W., Rankin, E. M., Snee, M., Hatton, M., Postmus, P. E., Collette, L. & Senan, S. 2009. Prophylactic cranial irradiation in extensive disease small-cell lung cancer: short-term health-related quality of life and patient reported symptoms: results of an international Phase III randomized controlled trial by the EORTC Radiation Oncology and Lung Cancer Groups. *J Clin Oncol*, 27, 78-84.

Slotman, B. J., van Tinteren, H., Praag, J. O., Knegjens, J. L., El Sharouni, S. Y., Hatton, M., Keijser, A., Faivre-Finn, C. & Senan, S. 2015. Use of thoracic radiotherapy for extensive stage small-cell lung cancer: a phase 3 randomised controlled trial. *Lancet*, 385, 36-42.

Snijder, R. J., Brutel de la Riviere, A., Elbers, H. J. & van den Bosch, J. M. 1998. Survival in resected stage I lung cancer with residual tumor at the bronchial resection margin. *Ann Thorac Surg*, 65, 212-6.

Spiro, S. G., James, L. E., Rudd, R. M., Trask, C. W., Tobias, J. S., Snee, M., Gilligan, D., Murray, P. A., Ruiz de Elvira, M. C., O'Donnell, K. M., Gower, N. H., Harper, P. G., Hackshaw, A. K. & Group, L. L. C. 2006. Early compared with late radiotherapy in combined modality treatment for limited disease small-cell lung cancer: a London Lung Cancer Group multicenter randomized clinical trial and meta-analysis. *J Clin Oncol*, 24, 3823-30.

Trodella, L., Granone, P., Valente, S., Valentini, V., Balducci, M., Mantini, G., Turriziani, A., Margaritora, S., Cesario, A., Ramella, S., Corbo, G. M., D'Angelillo, R. M., Fontana, A., Galetta, D. & Cellini, N. 2002. Adjuvant radiotherapy in non-small cell lung cancer with pathological stage I: definitive results of a phase III randomized trial. *Radiother Oncol*, 62, 11-9.

van Baardwijk, A., Bosmans, G., Bentzen, S. M., Boersma, L., Dekker, A., Wanders, R., Wouters, B. G., Lambin, P. & De Ruysscher, D. 2008a. Radiation dose prescription for non-small-cell lung cancer according to normal tissue dose constraints: an in silico clinical trial. *Int J Radiat Oncol Biol Phys*, **71**, **1103-10**.

van Baardwijk, A., Bosmans, G., Boersma, L., Wanders, S., Dekker, A., Dingemans, A. M., Bootsma, G., Geraedts, W., Pitz, C., Simons, J., Lambin, P. & De Ruysscher, D. 2008b. Individualized radical radiotherapy of non-small-cell lung cancer based on normal tissue dose constraints: a feasibility study. *Int J Radiat Oncol Biol Phys*, **71**, 1394-401.

Vansteenkiste, J., De Ruysscher, D., Eberhardt, W. E., Lim, E., Senan, S., Felip, E., Peters, S. & Group, E. G. W. 2013. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Ann Oncol*, 24 Suppl 6, vi89-98.

Wang, J. Y., Chen, K. Y., Wang, J. T., Chen, J. H., Lin, J. W., Wang, H. C., Lee, L. N. & Yang, P. C. 2002. Outcome and prognostic factors for patients with non-small-cell lung cancer and severe radiation pneumonitis. *Int J Radiat Oncol Biol Phys*, 54, 735-41.

Wind, J., Smit, E. J., Senan, S. & Eerenberg, J. P. 2007. Residual disease at the bronchial stump after curative resection for lung cancer. *Eur J Cardiothorac Surg*, 32, 29-34.

Section 2.8: Palliative Care

Brierly, J. D., Gospodarowicz, M. K. & Wittekind, C. 2016. TNM Classification of Malignant Tumours, 8th Edition, Wiley-Blackwell.

Department of Health (DoH). 2001. *Report of the National Advisory Committee on Palliative Care*. Available:<u>http://health.gov.</u> <u>ie/blog/publications/report-of-the-national-advisory-committee-on-palliative-care/</u>

Smith, T. J., Temin, S., Alesi, E. R., Abernethy, A. P., Balboni, T. A., Basch, E. M., Ferrell, B. R., Loscalzo, M., Meier, D. E., Paice, J. A., Peppercorn, J. M., Somerfield, M., Stovall, E. & Von Roenn, J. H. 2012. American Society of Clinical Oncology provisional clinical opinion: the integration of palliative care into standard oncology care. *J Clin Oncol*, 30, 880-7.

Temel, J. S., Greer, J. A., Muzikansky, A., Gallagher, E. R., Admane, S., Jackson, V. A., Dahlin, C. M., Blinderman, C. D., Jacobsen, J., Pirl, W. F., Billings, J. A. & Lynch, T. J. 2010. Early palliative care for patients with metastatic non-small-cell lung cancer. *N Engl J Med*, 363, 733-42.

Section 3: Development of the National Clinical Guideline

Brouwers, M.C., Kho, M.E., Browman, G.P., Burgers, J.S., Cluzeau, F., Feder, G., Fervers, B., for the AGREE Next Steps Consortium. 2010. AGREE Next Steps Consortium. AGREE II: Advancing guideline development, reporting and evaluation in health care. *Can Med Assoc J.* 2010;13:E839–E842.

Department of Health and Children (DoHC). 2006. A Strategy for Cancer Control in Ireland. Available: <u>www.dohc. ie/</u> <u>publications/cancer_control_2006.html</u>

Hickey, P. & Evans, D. 2014. Smoking in Ireland 2014:Synopsis of Key Patterns. HSE National Tobacco Control Office,: Health Service Executive.

Luengo-Fernandez, R., Leal, J., Gray, A. & Sullivan, R. 2013. Economic burden of cancer across the European Union: a population-based cost analysis. *Lancet Oncol*, 14, 1165-74.

Michie, S., Van Stralen, M., & West, R. 2011. The behaviour change wheel: A new method for characterising and designing behaviour change interventions. *Implement Sci*, 6(1), 42.

National Cancer Registry Ireland (NCRI). 2014. Cancer Projections for Ireland (2015 – 2040). National Cancer Registry. NCR, Cork, Ireland.

National Cancer Registry Ireland (NCRI). 2015. Cancer in Ireland 1994-2013: Annual Report of the National Cancer Registry. NCR, Cork, Ireland.

National Cancer Registry Ireland (NCRI) 2016. Cancer in Ireland 1994-2014: Annual Report of the National Cancer Registry. NCR, Cork, Ireland.

Oxford Centre For Evidence-Based Medicine (Oxford Cebm). 2009. Oxford Centre for Evidence-based Medicine – Levels of Evidence (March 2009). Available: <u>www.cebm.net/oxford-centre-evidence-based-medicinelevels-evidence-march-2009/</u>

Sackett, D.L., Straus, S.E., Richardson, W.S., Rosenberg, W., & Haynes, R.B. 2000. Evidence based medicine. How to practice and teach EBM, 2nd edn. Churchill Livingstone, Edinburgh.

Scottish Intercollegiate Guidelines Network (SIGN). 2011. A guideline developers' handbook. Edinburgh: SIGN; 2011. (SIGN publication no. 50). [cited 01 Nov 2014]. Available: <u>www.sign.ac.uk</u>

Section 4: Appendices

Burfeind, W. R., Jr., Jaik, N. P., Villamizar, N., Toloza, E. M., Harpole, D. H., Jr. & D'amico, T. A. 2010. A cost-minimisation analysis of lobectomy: thoracoscopic versus posterolateral thoracotomy. *Eur J Cardiothorac Surg*, 37, 827-32.

Cao, J. Q., Rodrigues, G. B., Louie, A. V. & Zaric, G. S. 2012. Systematic review of the cost-effectiveness of positron-emission tomography in staging of non--small-cell lung cancer and management of solitary pulmonary nodules. *Clin Lung Cancer*, 13, 161-70.

Chouaid, C., Crequit, P., Borget, I. & Vergnenegre, A. 2015. Economic evaluation of first-line and maintenance treatments for advanced non-small cell lung cancer: a systematic review. *Clinicoecon Outcomes Res*, 7, 9-15.

Deppen, S. A., Davis, W. T., Green, E. A., Rickman, O., Aldrich, M. C., Fletcher, S., Putnam, J. B., Jr. & Grogan, E. L. 2014. Costeffectiveness of initial diagnostic strategies for pulmonary nodules presenting to thoracic surgeons. *Ann Thorac Surg*, 98, 1214-22.

Health Information And Quality Authority 2014. Guidelines for the Economic Evaluation of Health Technologies in Ireland. Dublin: HIQA.

Luengo-Fernandez, R., Leal, J., Gray, A. & Sullivan, R. 2013. Economic burden of cancer across the European Union: a populationbased cost analysis. *Lancet Oncol*, 14, 1165-74.

Michie, S. & Johnston, M. 2004. Changing clinical behaviour by making guidelines specific. BMJ, 328, 343 - 345.

Michie, S., Van Stralen, M. M. & West, R. 2011. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. *Implement Sci*, 6, 42.

Mitera, G., Swaminath, A., Rudoler, D., Seereeram, C., Giuliani, M., Leighl, N., Gutierrez, E., Dobrow, M. J., Coyte, P. C., Yung, T., Bezjak, A. & Hope, A. J. 2014. Cost-effectiveness analysis comparing conventional versus stereotactic body radiotherapy for surgically ineligible stage I non-small-cell lung cancer. *J Oncol Pract*, 10, e130-6.

NCRI 2014. Cancer Projections for Ireland 2015-2040.

Paul, S., Altorki, N. K., Sheng, S., Lee, P. C., Harpole, D. H., Onaitis, M. W., Stiles, B. M., Port, J. L. & D'amico, T. A. 2010. Thoracoscopic lobectomy is associated with lower morbidity than open lobectomy: a propensity-matched analysis from the STS database. *J Thorac Cardiovasc Surg*, 139, 366-78.

Puri, V., Crabtree, T. D., Kymes, S., Gregory, M., Bell, J., Bradley, J. D., Robinson, C., Patterson, G. A., Kreisel, D., Krupnick, A. S. & Meyers, B. F. 2012. A comparison of surgical intervention and stereotactic body radiation therapy for stage I lung cancer in high-risk patients: a decision analysis. *J Thorac Cardiovasc Surg*, 143, 428-36.

Sharples, L. D., Jackson, C., Wheaton, E., Griffith, G., Annema, J. T., Dooms, C., Tournoy, K. G., Deschepper, E., Hughes, V., Magee, L., Buxton, M. & Rintoul, R. C. 2012. Clinical effectiveness and cost-effectiveness of endobronchial and endoscopic ultrasound relative to surgical staging in potentially resectable lung cancer: results from the ASTER randomised controlled trial. *Health Technol Assess*, 16, 1-75, iii-iv.

Sher, D. J., Wee, J. O. & Punglia, R. S. 2011. Cost-effectiveness analysis of stereotactic body radiotherapy and radiofrequency ablation for medically inoperable, early-stage non-small cell lung cancer. *Int J Radiat Oncol Biol Phys*, 81, e767-74.

Scottish Intercollegiate Guidelines Network (SIGN). 2011. A guideline developers' handbook. Edinburgh: SIGN; 2011. (SIGN publication no. 50). [cited 01 Nov 2014]. Available: www.sign.ac.uk

Sullivan, R., Peppercorn, J., Sikora, K., Zalcberg, J., Meropol, N. J., Amir, E., Khayat, D., Boyle, P., Autier, P., Tannock, I. F., Fojo, T., Siderov, J., Williamson, S., Camporesi, S., Mcvie, J. G., Purushotham, A. D., Naredi, P., Eggermont, A., Brennan, M. F., Steinberg, M. L., De Ridder, M., Mccloskey, S. A., Verellen, D., Roberts, T., Storme, G., Hicks, R. J., Ell, P. J., Hirsch, B. R., Carbone, D. P., Schulman, K. A., Catchpole, P., Taylor, D., Geissler, J., Brinker, N. G., Meltzer, D., Kerr, D. & Aapro, M. 2011. Delivering affordable cancer care in high-income countries. *Lancet Oncol*, 12, 933-80.

Department of Health, Hawkins House, Hawkins Street, Dublin, D02 VW90, Ireland Tel: +353 1 6354000 • Fax: +353 1 6354001 • www.health.gov.ie